Search results
Results from the WOW.Com Content Network
A Course in Digital Signal Processing. John Wiley and Sons. pp. 27–29 and 104–105. ISBN 0-471-14961-6. Siebert, William M. (1986). Circuits, Signals, and Systems. MIT Electrical Engineering and Computer Science Series. Cambridge, MA: MIT Press. ISBN 0262690950. Lyons, Richard G. (2010). Understanding Digital Signal Processing (3rd ed ...
Simulink is a MATLAB-based graphical programming environment for modeling, simulating and analyzing multidomain dynamical systems. Its primary interface is a graphical block diagramming tool and a customizable set of block libraries. It offers tight integration with the rest of the MATLAB environment and can either drive MATLAB or be scripted ...
Signals may also be categorized by their spatial distributions as either point source signals (PSSs) or distributed source signals (DSSs). [2] In Signals and Systems, signals can be classified according to many criteria, mainly: according to the different feature of values, classified into analog signals and digital signals; according to the ...
Triangular functions are useful in signal processing and communication systems engineering as representations of idealized signals, and the triangular function specifically as an integral transform kernel function from which more realistic signals can be derived, for example in kernel density estimation.
In digital signal processing (DSP), a normalized frequency is a ratio of a variable frequency and a constant frequency associated with a system (such as a sampling rate, ). Some software applications require normalized inputs and produce normalized outputs, which can be re-scaled to physical units when necessary.
The system is then defined by the equation H(x(t)) = y(t), where y(t) is some arbitrary function of time, and x(t) is the system state. Given y(t) and H, the system can be solved for x(t). The behavior of the resulting system subjected to a complex input can be described as a sum of responses to simpler inputs.
In engineering, a transfer function (also known as system function [1] or network function) of a system, sub-system, or component is a mathematical function that models the system's output for each possible input. [2] [3] [4] It is widely used in electronic engineering tools like circuit simulators and control systems.
The impulse response can be computed to any desired degree of accuracy by choosing a suitable approximation for δ, and once it is known, it characterizes the system completely. See LTI system theory § Impulse response and convolution. The inverse Fourier transform of the tempered distribution f(ξ) = 1 is the delta function.