enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cohen's h - Wikipedia

    en.wikipedia.org/wiki/Cohen's_h

    In statistics, Cohen's h, popularized by Jacob Cohen, is a measure of distance between two proportions or probabilities. Cohen's h has several related uses: It can be used to describe the difference between two proportions as "small", "medium", or "large". It can be used to determine if the difference between two proportions is "meaningful".

  3. Jacob Cohen (statistician) - Wikipedia

    en.wikipedia.org/wiki/Jacob_Cohen_(statistician)

    Jacob Cohen (April 20, 1923 – January 20, 1998) was an American psychologist and statistician best known for his work on statistical power and effect size, which helped to lay foundations for current statistical meta-analysis [1] [2] and the methods of estimation statistics. He gave his name to such measures as Cohen's kappa, Cohen's d, and ...

  4. Effect size - Wikipedia

    en.wikipedia.org/wiki/Effect_size

    In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of one parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size ...

  5. Category:Effect size - Wikipedia

    en.wikipedia.org/wiki/Category:Effect_size

    Print/export Download as PDF; Printable version; In other projects ... Help. Pages in category "Effect size" The following 6 pages are in this category, out of 6 ...

  6. Talk:Effect size - Wikipedia

    en.wikipedia.org/wiki/Talk:Effect_size

    Hi all and especially Grant, Have you noticed that the current version of the article - the section on Cohen & r effect size interpretation - says that "Cohen gives the following guidelines for the social sciences: small effect size, r = 0.1 − 0.23; medium, r = 0.24 − 0.36; large, r = 0.37 or larger" (references: Cohen's 1988 book and 1992 ...

  7. Visible learning - Wikipedia

    en.wikipedia.org/wiki/Visible_Learning

    Visible learning is a meta-study that analyzes effect sizes of measurable influences on learning outcomes in educational settings. [1] It was published by John Hattie in 2008 and draws upon results from 815 other Meta-analyses. The Times Educational Supplement described Hattie's meta-study as "teaching's holy grail". [2]

  8. Phi coefficient - Wikipedia

    en.wikipedia.org/wiki/Phi_coefficient

    In statistics, the phi coefficient (or mean square contingency coefficient and denoted by φ or r φ) is a measure of association for two binary variables.. In machine learning, it is known as the Matthews correlation coefficient (MCC) and used as a measure of the quality of binary (two-class) classifications, introduced by biochemist Brian W. Matthews in 1975.

  9. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.