Search results
Results from the WOW.Com Content Network
Gibbs sampling is named after the physicist Josiah Willard Gibbs, in reference to an analogy between the sampling algorithm and statistical physics.The algorithm was described by brothers Stuart and Donald Geman in 1984, some eight decades after the death of Gibbs, [1] and became popularized in the statistics community for calculating marginal probability distribution, especially the posterior ...
The Metropolis-Hastings algorithm sampling a normal one-dimensional posterior probability distribution. In statistics and statistical physics, the Metropolis–Hastings algorithm is a Markov chain Monte Carlo (MCMC) method for obtaining a sequence of random samples from a probability distribution from which direct sampling is difficult. New ...
Gibbs sampling can be viewed as a special case of Metropolis–Hastings algorithm with acceptance rate uniformly equal to 1. When drawing from the full conditional distributions is not straightforward other samplers-within-Gibbs are used (e.g., see [7] [8]). Gibbs sampling is popular partly because it does not require any 'tuning'.
When sampling from a full-conditional density is not easy, a single iteration of slice sampling or the Metropolis-Hastings algorithm can be used within-Gibbs to sample from the variable in question. If the full-conditional density is log-concave, a more efficient alternative is the application of adaptive rejection sampling (ARS) methods.
Monte Carlo methods are a class of computational algorithms that rely on repeated random sampling to compute their results. In statistical mechanics applications prior to the introduction of the Metropolis algorithm, the method consisted of generating a large number of random configurations of the system, computing the properties of interest (such as energy or density) for each configuration ...
In statistics and physics, multicanonical ensemble (also called multicanonical sampling or flat histogram) is a Markov chain Monte Carlo sampling technique that uses the Metropolis–Hastings algorithm to compute integrals where the integrand has a rough landscape with multiple local minima.
Hamiltonian Monte Carlo corresponds to an instance of the Metropolis–Hastings algorithm, with a Hamiltonian dynamics evolution simulated using a time-reversible and volume-preserving numerical integrator (typically the leapfrog integrator) to propose a move to a new point in the state space.
Some careful statistical calculation (the Metropolis algorithm) is used to compute the appropriate distribution of brightness over the image. This procedure has the advantage, relative to bidirectional path tracing, that once a path has been found from light to eye, the algorithm can then explore nearby paths; thus difficult-to-find light paths ...