Search results
Results from the WOW.Com Content Network
The resulting nitrilium ion is hydrolyzed to the desired amide. Primary, [7] secondary, [4] tertiary, [8] and benzylic [9] alcohols, [1] as well as tert-butyl acetate, [10] also successfully react with nitriles in the presence of strong acids to form amides via the Ritter reaction. A wide range of nitriles can be used.
Nitrilase enzymes (nitrile aminohydrolase; EC 3.5.5.1) catalyse the hydrolysis of nitriles to carboxylic acids and ammonia, without the formation of "free" amide intermediates. [1] Nitrilases are involved in natural product biosynthesis and post translational modifications in plants, animals, fungi and certain prokaryotes.
Nitrile hydratase and amidase are two hydrating and hydrolytic enzymes responsible for the sequential metabolism of nitriles in bacteria that are capable of utilising nitriles as their sole source of nitrogen and carbon, and in concert act as an alternative to nitrilase activity, which performs nitrile hydrolysis without formation of an intermediate primary amide.
The mechanism for the reduction of a nitrile to an aldehyde with DIBAL-H. The hydride reagent Diisobutylaluminium hydride, or DIBAL-H, is commonly used to convert nitriles to the aldehyde. [14] Regarding the proposed mechanism, DIBAL forms a Lewis acid-base adduct with the nitrile by formation of an N-Al bond. The hydride is then transferred to ...
Reaction of arene with isocyanate catalysed by aluminium trichloride, formation of aromatic amide. Ritter reaction [28] Alkenes, alcohols, or other carbonium ion sources Secondary amides via an addition reaction between a nitrile and a carbonium ion in the presence of concentrated acids. Photolytic addition of formamide to olefins [29] Terminal ...
Cationic nitrile complexes are however susceptible to nucleophilic attack at carbon. Consequently some nitrile complexes catalyze the hydrolysis of nitriles to give the amides. [7] Fe- and Co-nitrile complexes are intermediates in nitrile hydratase enzymes. N-coordination activates the sp-hybridized carbon center toward attack by nucleophiles ...
The reaction generates a nitrile and a carbocation, which is quickly intercepted to form a variety of products. The nitrile can also be hydrolyzed under reaction conditions to give carboxylic acids. Different reaction conditions can favor the fragmentation over the rearrangement.
With nitrile electrophiles, nucleophilic addition take place by: [1] hydrolysis of a nitrile to form an amide or a carboxylic acid; organozinc nucleophiles in the Blaise reaction; alcohols in the Pinner reaction. the (same) nitrile α-carbon in the Thorpe reaction. The intramolecular version is called the Thorpe–Ziegler reaction.