enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    MATLAB + Deep Learning Toolbox (formally Neural Network Toolbox) MathWorks: 1992 Proprietary: No Linux, macOS, Windows: C, C++, Java, MATLAB: MATLAB: No No Train with Parallel Computing Toolbox and generate CUDA code with GPU Coder [23] No Yes [24] Yes [25] [26] Yes [25] Yes [25] Yes With Parallel Computing Toolbox [27] Yes Microsoft Cognitive ...

  3. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    A number of pieces of deep learning software are built on top of PyTorch, including Tesla Autopilot, [15] Uber's Pyro, [16] Hugging Face's Transformers, [17] PyTorch Lightning, [18] [19] and Catalyst. [20] [21] PyTorch provides two high-level features: [22] Tensor computing (like NumPy) with strong acceleration via graphics processing units (GPU)

  4. Tensor software - Wikipedia

    en.wikipedia.org/wiki/Tensor_software

    This follows the functionality of MATLAB Tensor toolbox and Hierarchical Tucker Toolbox. ITensors.jl [37] is a library for rapidly creating correct and efficient tensor network algorithms. This is the Julia version of ITensor, not a wrapper around the C++ version but full implementations by Julia language.

  5. CUDA - Wikipedia

    en.wikipedia.org/wiki/CUDA

    In computing, CUDA is a proprietary [2] parallel computing platform and application programming interface (API) that allows software to use certain types of graphics processing units (GPUs) for accelerated general-purpose processing, an approach called general-purpose computing on GPUs.

  6. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    TensorFlow is Google Brain's second-generation system. Version 1.0.0 was released on February 11, 2017. [17] While the reference implementation runs on single devices, TensorFlow can run on multiple CPUs and GPUs (with optional CUDA and SYCL extensions for general-purpose computing on graphics processing units). [18]

  7. Parallel Thread Execution - Wikipedia

    en.wikipedia.org/wiki/Parallel_Thread_Execution

    Shared memory is declared in the PTX file via lines at the start of the form: .shared .align 8 .b8 pbatch_cache [ 15744 ]; // define 15,744 bytes, aligned to an 8-byte boundary Writing kernels in PTX requires explicitly registering PTX modules via the CUDA Driver API, typically more cumbersome than using the CUDA Runtime API and Nvidia's CUDA ...

  8. Deeplearning4j - Wikipedia

    en.wikipedia.org/wiki/Deeplearning4j

    Deeplearning4j relies on the widely used programming language Java, though it is compatible with Clojure and includes a Scala application programming interface (API). It is powered by its own open-source numerical computing library, ND4J, and works with both central processing units (CPUs) and graphics processing units (GPUs).

  9. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    Recurrent neural networks (RNNs) are a class of artificial neural network commonly used for sequential data processing. Unlike feedforward neural networks, which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series.