enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    MATLAB + Deep Learning Toolbox (formally Neural Network Toolbox) MathWorks: 1992 Proprietary: No Linux, macOS, Windows: C, C++, Java, MATLAB: MATLAB: No No Train with Parallel Computing Toolbox and generate CUDA code with GPU Coder [23] No Yes [24] Yes [25] [26] Yes [25] Yes [25] Yes With Parallel Computing Toolbox [27] Yes Microsoft Cognitive ...

  3. Torch (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Torch_(machine_learning)

    Torch is an open-source machine learning library, a scientific computing framework, and a scripting language based on Lua. [3] It provides LuaJIT interfaces to deep learning algorithms implemented in C. It was created by the Idiap Research Institute at EPFL. Torch development moved in 2017 to PyTorch, a port of the library to Python. [4] [5] [6]

  4. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    A number of pieces of deep learning software are built on top of PyTorch, including Tesla Autopilot, [15] Uber's Pyro, [16] Hugging Face's Transformers, [17] PyTorch Lightning, [18] [19] and Catalyst. [20] [21] PyTorch provides two high-level features: [22] Tensor computing (like NumPy) with strong acceleration via graphics processing units (GPU)

  5. Tensor software - Wikipedia

    en.wikipedia.org/wiki/Tensor_software

    This follows the functionality of MATLAB Tensor toolbox and Hierarchical Tucker Toolbox. ITensors.jl [37] is a library for rapidly creating correct and efficient tensor network algorithms. This is the Julia version of ITensor, not a wrapper around the C++ version but full implementations by Julia language.

  6. CUDA - Wikipedia

    en.wikipedia.org/wiki/CUDA

    In computing, CUDA (Compute Unified Device Architecture) is a proprietary [2] parallel computing platform and application programming interface (API) that allows software to use certain types of graphics processing units (GPUs) for accelerated general-purpose processing, an approach called general-purpose computing on GPUs.

  7. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    PyTorch: Tensors and Dynamic neural networks in Python with GPU acceleration. TensorFlow: Apache 2.0-licensed Theano-like library with support for CPU, GPU and Google's proprietary TPU, [116] mobile; Theano: A deep-learning library for Python with an API largely compatible with the NumPy library.

  8. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    [7] [8] [9] The initial version was released under the Apache License 2.0 in 2015. [1] [10] Google released an updated version, TensorFlow 2.0, in September 2019. [11] TensorFlow can be used in a wide variety of programming languages, including Python, JavaScript, C++, and Java, [12] facilitating its use in a range of applications in many sectors.

  9. Deeplearning4j - Wikipedia

    en.wikipedia.org/wiki/Deeplearning4j

    Deeplearning4j relies on the widely used programming language Java, though it is compatible with Clojure and includes a Scala application programming interface (API). It is powered by its own open-source numerical computing library, ND4J, and works with both central processing units (CPUs) and graphics processing units (GPUs).