Search results
Results from the WOW.Com Content Network
Kirchhoff's integral theorem, sometimes referred to as the Fresnel–Kirchhoff integral theorem, [3] uses Green's second identity to derive the solution of the homogeneous scalar wave equation at an arbitrary spatial position P in terms of the solution of the wave equation and its first order derivative at all points on an arbitrary closed surface as the boundary of some volume including P.
The integral has the following form for a monochromatic wave: [2] [3] [4] = [^ ^],where the integration is performed over an arbitrary closed surface S enclosing the observation point , in is the wavenumber, in is the distance from an (infinitesimally small) integral surface element to the point , is the spatial part of the solution of the homogeneous scalar wave equation (i.e., (,) = as the ...
The Kirchhoff–Helmholtz integral combines the Helmholtz equation with the Kirchhoff integral theorem [1] to produce a method applicable to acoustics, [2] seismology [3] and other disciplines involving wave propagation.
Kirchhoff showed that in many cases, the theorem can be approximated to a simpler form that is equivalent to the formation of Fresnel's formulation. [3] For an aperture illumination consisting of a single expanding spherical wave, if the radius of the curvature of the wave is sufficiently large, Kirchhoff gave the following expression for K(χ ...
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
Fubini's theorem (integration) Fubini's theorem on differentiation (real analysis) Fuchs's theorem (differential equations) Fuglede's theorem (functional analysis) Full employment theorem (theoretical computer science) Fulton–Hansen connectedness theorem (algebraic geometry) Fundamental theorem of algebra (complex analysis)
This is the Fresnel diffraction integral; it means that, if the Fresnel approximation is valid, the propagating field is a spherical wave, originating at the aperture and moving along z. The integral modulates the amplitude and phase of the spherical wave. Analytical solution of this expression is still only possible in rare cases.
Diffraction geometry, showing aperture (or diffracting object) plane and image plane, with coordinate system. If the aperture is in x ′ y ′ plane, with the origin in the aperture and is illuminated by a monochromatic wave, of wavelength λ, wavenumber k with complex amplitude A(x ′,y ′), and the diffracted wave is observed in the unprimed x,y-plane along the positive -axis, where l,m ...