Search results
Results from the WOW.Com Content Network
In some fish, capillary blood flows in the opposite direction to the water, causing countercurrent exchange. The muscles on the sides of the pharynx push the oxygen-depleted water out the gill openings. In bony fish, the pumping of oxygen-poor water is aided by a bone that surrounds the gills called the operculum. [6]
The body of a fish is denser than water, so fish must compensate for the difference or they will sink. Many bony fishes have an internal organ called a swim bladder, or gas bladder, that adjusts their buoyancy through manipulation of gases. In this way, fish can stay at the current water depth, or ascend or descend without having to waste ...
Air plants, a Tillandsia species, are epiphytes that use their degenerated, non-nutritive roots to anchor upon rocks or other plants. Hygroscopic leaves absorb their necessary moisture from humidity in the air. The collected water molecules are transported from leaf surfaces to an internal storage network via osmotic pressure with capacity ...
Aquatic plants require special adaptations for prolonged inundation in water, and for floating at the water surface. The most common adaptation is the presence of lightweight internal packing cells, aerenchyma , but floating leaves and finely dissected leaves are also common.
Fish need dissolved oxygen to survive, although their tolerance to low oxygen varies among species; in extreme cases of low oxygen, some fish even resort to air gulping. [25] Plants often have to produce aerenchyma, while the shape and size of leaves may also be altered. [26] Conversely, oxygen is fatal to many kinds of anaerobic bacteria. [22]
Aerial respiration is the 'gulping' of air at the surface of water to directly extract oxygen from the atmosphere. Aerial respiration evolved in fish that were exposed to more frequent hypoxia; also, species that engage in aerial respiration tend to be more hypoxia tolerant than those which do not air-breath during the hypoxia. [53]
Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes (salts in solution which in this case is represented by body fluid) to keep the body fluids from becoming too diluted or concentrated.
[28] [29] The primary function of pigments in plants is photosynthesis, which uses the green pigment chlorophyll and several colourful pigments that absorb as much light energy as possible. Chlorophyll is the primary pigment in plants; it is a chlorin that absorbs yellow and blue wavelengths of light while reflecting green. It is the presence ...