Search results
Results from the WOW.Com Content Network
The offset value is given as a subscript, e.g., = MPa or = MPa. [15] For most practical engineering uses, is multiplied by a factor of safety to obtain a lower value of the offset yield point. High strength steel and aluminum alloys do not exhibit a yield point, so this offset yield point is used on these materials.
It is an indication of the minimum stress a pipe may experience that will cause plastic (permanent) deformation. The SMYS is required to determine the maximum allowable operating pressure (MAOP) of a pipeline, as determined by Barlow's Formula which is P = (2 * S * T)/(OD * SF), where P is pressure, OD is the pipe’s outside diameter, S is the ...
Once the friction factors of the pipes are obtained (or calculated from pipe friction laws such as the Darcy-Weisbach equation), we can consider how to calculate the flow rates and head losses on the network. Generally the head losses (potential differences) at each node are neglected, and a solution is sought for the steady-state flows on the ...
The problem generalizes fairly obviously to higher dimensions e.g. to offset surfaces, and slightly less trivially to pipe surfaces. [23] Note that the terminology for the higher-dimensional versions varies even more widely than in the planar case, e.g. other authors speak of parallel fibers, ribbons, and tubes. [ 24 ]
Eccentric reducers exhibit a unique design with one side having a larger diameter and the other side being smaller and offset from the centerline. This offset configuration enables the eccentric reducer to maintain a consistent fluid level within the piping system, preventing air or gas accumulation. [4]
When the pipe surface's roughness height ε is significant (typically at high Reynolds number), the friction factor departs from the smooth pipe curve, ultimately approaching an asymptotic value ("rough pipe" regime). In this regime, the resistance to flow varies according to the square of the mean flow velocity and is insensitive to Reynolds ...
It is often helpful to visualize the well as a U-shaped tube. Column Y of the tube represents the annulus, and column X represents the pipe (string) in the well. The bottom of the U-tube represents the bottom of the well. In most cases, fluids create hydrostatic pressure in both the pipe and annulus.
The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...