Search results
Results from the WOW.Com Content Network
Frog Fractions 2 is a sequel to the free browser-based game Frog Fractions, which was developed by independent game studio Twinbeard, founded by Jim Stormdancer.. Stormdancer used an extended alternate reality game (ARG) as part of the game's announcement and subsequent development, tying the release of the game to the success of the players' completing the AR
The game does not actually teach the player about fractions; [8] the player's score is given in fractions, but no knowledge of them is necessary to play. Its sequel, Frog Fractions 2, announced by a Kickstarter in 2014, was released in December 2016 after players successfully completed a multi-segmented alternative reality game assembled by ...
The Rhind Mathematical Papyrus, [1] [2] an ancient Egyptian mathematical work, includes a mathematical table for converting rational numbers of the form 2/n into Egyptian fractions (sums of distinct unit fractions), the form the Egyptians used to write fractional numbers. The text describes the representation of 50 rational numbers.
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. [1]
The entire fraction may be expressed as a single composition, in which case it is hyphenated, or as a number of fractions with a numerator of one, in which case they are not. (For example, two-fifths is the fraction 2 / 5 and two fifths is the same fraction understood as 2 instances of 1 / 5 .) Fractions should always be ...
The topic of Egyptian fractions has also seen interest in modern number theory; for instance, the Erdős–Graham problem [9] and the Erdős–Straus conjecture [10] concern sums of unit fractions, as does the definition of Ore's harmonic numbers. [11] A pattern of spherical triangles with reflection symmetry across each triangle edge.
A rational fraction is an algebraic fraction whose numerator and denominator are both polynomials. Thus 3 x x 2 + 2 x − 3 {\displaystyle {\frac {3x}{x^{2}+2x-3}}} is a rational fraction, but not x + 2 x 2 − 3 , {\displaystyle {\frac {\sqrt {x+2}}{x^{2}-3}},} because the numerator contains a square root function.
[2] The purpose of the proof is not primarily to convince its readers that 22 / 7 (or 3 + 1 / 7 ) is indeed bigger than π. Systematic methods of computing the value of π exist. If one knows that π is approximately 3.14159, then it trivially follows that π < 22 / 7 , which is approximately 3.142857.