Search results
Results from the WOW.Com Content Network
In mathematics and statistics, the arithmetic mean (/ ˌ æ r ɪ θ ˈ m ɛ t ɪ k / arr-ith-MET-ik), arithmetic average, or just the mean or average (when the context is clear) is the sum of a collection of numbers divided by the count of numbers in the collection. [1]
The arithmetic mean (or simply mean or average) of a list of numbers, is the sum of all of the numbers divided by their count.Similarly, the mean of a sample ,, …,, usually denoted by ¯, is the sum of the sampled values divided by the number of items in the sample.
The grand mean or pooled mean is the average of the means of several subsamples, as long as the subsamples have the same number of data points. [1] For example, consider several lots, each containing several items. The items from each lot are sampled for a measure of some variable and the means of the measurements from each lot are computed ...
The sample mean is thus more efficient than the sample median in this example. However, there may be measures by which the median performs better. For example, the median is far more robust to outliers, so that if the Gaussian model is questionable or approximate, there may advantages to using the median (see Robust statistics).
A contrast is defined as the sum of each group mean multiplied by a coefficient for each group (i.e., a signed number, c j). [10] In equation form, = ¯ + ¯ + + ¯ ¯, where L is the weighted sum of group means, the c j coefficients represent the assigned weights of the means (these must sum to 0 for orthogonal contrasts), and ¯ j represents the group means. [8]
Most frequently, t statistics are used in Student's t-tests, a form of statistical hypothesis testing, and in the computation of certain confidence intervals. The key property of the t statistic is that it is a pivotal quantity – while defined in terms of the sample mean, its sampling distribution does not depend on the population parameters, and thus it can be used regardless of what these ...
Derive the distribution of the test statistic under the null hypothesis from the assumptions. In standard cases this will be a well-known result. For example, the test statistic might follow a Student's t distribution with known degrees of freedom, or a normal distribution with known mean and variance.
The products of small numbers may be calculated by using the squares of integers; for example, to calculate 13 × 17, one can remark 15 is the mean of the two factors, and think of it as (15 − 2) × (15 + 2), i.e. 15 2 − 2 2. Knowing that 15 2 is 225 and 2 2 is 4, simple subtraction shows that 225 − 4 = 221, which is the desired product.