enow.com Web Search

  1. Ad

    related to: degree of a graph theory

Search results

  1. Results from the WOW.Com Content Network
  2. Degree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Degree_(graph_theory)

    The degree sequence of an undirected graph is the non-increasing sequence of its vertex degrees; [5] for the above graph it is (5, 3, 3, 2, 2, 1, 0). The degree sequence is a graph invariant, so isomorphic graphs have the same degree sequence. However, the degree sequence does not, in general, uniquely identify a graph; in some cases, non ...

  3. Degree matrix - Wikipedia

    en.wikipedia.org/wiki/Degree_matrix

    In the mathematical field of algebraic graph theory, the degree matrix of an undirected graph is a diagonal matrix which contains information about the degree of each vertex—that is, the number of edges attached to each vertex. [1]

  4. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    In mathematics and computer science, graph theory is the study of graphs, ... The degree of a graph is the maximum of the degrees of its vertices.

  5. Directed graph - Wikipedia

    en.wikipedia.org/wiki/Directed_graph

    The degree sequence of a directed graph is the list of its indegree and outdegree pairs; for the above example we have degree sequence ((2, 0), (2, 2), (0, 2), (1, 1)). The degree sequence is a directed graph invariant so isomorphic directed graphs have the same degree sequence.

  6. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).

  7. Vertex (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(graph_theory)

    A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...

  8. Complete graph - Wikipedia

    en.wikipedia.org/wiki/Complete_graph

    K n has n(n – 1)/2 edges (a triangular number), and is a regular graph of degree n – 1. All complete graphs are their own maximal cliques. They are maximally connected as the only vertex cut which disconnects the graph is the complete set of vertices. The complement graph of a complete graph is an empty graph. If the edges of a complete ...

  9. Handshaking lemma - Wikipedia

    en.wikipedia.org/wiki/Handshaking_lemma

    The sum of degrees of all six vertices is 2 + 3 + 2 + 3 + 3 + 1 = 14, twice the number of edges. In graph theory, the handshaking lemma is the statement that, in every finite undirected graph, the number of vertices that touch an odd number of edges is even.

  1. Ad

    related to: degree of a graph theory