enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Marginal distribution - Wikipedia

    en.wikipedia.org/wiki/Marginal_distribution

    In probability theory and statistics, the marginal distribution of a subset of a collection of random variables is the probability distribution of the variables contained in the subset. It gives the probabilities of various values of the variables in the subset without reference to the values of the other variables.

  3. Conditional probability table - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability_table

    The first column sum is the probability that x =0 and y equals any of the values it can have – that is, the column sum 6/9 is the marginal probability that x=0. If we want to find the probability that y=0 given that x=0, we compute the fraction of the probabilities in the x=0 column that have the value y=0, which is 4/9 ÷ 6/9 = 4/6. Likewise ...

  4. Gibbs sampling - Wikipedia

    en.wikipedia.org/wiki/Gibbs_sampling

    Gibbs sampling is named after the physicist Josiah Willard Gibbs, in reference to an analogy between the sampling algorithm and statistical physics.The algorithm was described by brothers Stuart and Donald Geman in 1984, some eight decades after the death of Gibbs, [1] and became popularized in the statistics community for calculating marginal probability distribution, especially the posterior ...

  5. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  6. Joint probability distribution - Wikipedia

    en.wikipedia.org/wiki/Joint_probability_distribution

    Moreover, the final row and the final column give the marginal probability distribution for A and the marginal probability distribution for B respectively. For example, for A the first of these cells gives the sum of the probabilities for A being red, regardless of which possibility for B in the column above the cell occurs, as ⁠ 2 / 3 ⁠ .

  7. Law of total probability - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_probability

    The term law of total probability is sometimes taken to mean the law of alternatives, which is a special case of the law of total probability applying to discrete random variables. [ citation needed ] One author uses the terminology of the "Rule of Average Conditional Probabilities", [ 4 ] while another refers to it as the "continuous law of ...

  8. Marginal likelihood - Wikipedia

    en.wikipedia.org/wiki/Marginal_likelihood

    A marginal likelihood is a likelihood function that has been integrated over the parameter space.In Bayesian statistics, it represents the probability of generating the observed sample for all possible values of the parameters; it can be understood as the probability of the model itself and is therefore often referred to as model evidence or simply evidence.

  9. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.