enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler in 1609 (except the third law, and was fully published in 1619), describe the orbits of planets around the Sun. These laws replaced circular orbits and epicycles in the heliocentric theory of Nicolaus Copernicus with elliptical orbits and explained how planetary ...

  3. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    The specific example discussed is of a satellite orbiting a planet, but the rules of thumb could also apply to other situations, such as orbits of small bodies around a star such as the Sun. Kepler's laws of planetary motion: Orbits are elliptical, with the heavier body at one focus of the ellipse. A special case of this is a circular orbit (a ...

  4. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    According to Kepler's Third Law, the orbital period T of two point masses orbiting each other in a circular or elliptic orbit is: [1] = where: a is the orbit's semi-major axis; G is the gravitational constant, M is the mass of the more massive body.

  5. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    Kepler published the first two laws in 1609 and the third law in 1619. They supplanted earlier models of the Solar System, such as those of Ptolemy and Copernicus. Kepler's laws apply only in the limited case of the two-body problem. Voltaire and Émilie du Châtelet were the first to call them "Kepler's laws".

  6. Gravitomagnetic clock effect - Wikipedia

    en.wikipedia.org/wiki/Gravitomagnetic_Clock_Effect

    Among its consequences on the particle's orbital motion there is a small correction to Kepler's third law, namely = where T Kep is the particle's period, M is the mass of the central body, and a is the semimajor axis of the particle's ellipse. If the orbit of the particle is circular and lies in the equatorial plane of the central body, the ...

  7. Harmonices Mundi - Wikipedia

    en.wikipedia.org/wiki/Harmonices_Mundi

    This is immediately followed by Kepler's third law of planetary motion, which shows a constant proportionality between the cube of the semi-major axis of a planet's orbit and the square of the time of its orbital period. [10] Kepler's previous book, Astronomia nova, related the discovery of the first two principles now known as Kepler's laws.

  8. Binary mass function - Wikipedia

    en.wikipedia.org/wiki/Binary_mass_function

    The binary mass function follows from Kepler's third law when the radial velocity of one binary component is known. [1] Kepler's third law describes the motion of two bodies orbiting a common center of mass. It relates the orbital period with the orbital separation between the two bodies, and the sum of their masses.

  9. Gaussian gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gaussian_gravitational...

    This is Kepler's second law of planetary motion. The square of this quotient is proportional to the parameter (that is, the latus rectum) of the orbit and the sum of the mass of the Sun and the body. This is a modified form of Kepler's third law. He next defines: 2p as the parameter (i.e., the latus rectum) of a body's orbit,