Search results
Results from the WOW.Com Content Network
The internal wall of the canal is very delicate and allows the fluid to filter due to the high pressure of the fluid within the eye. [7] The secondary route is the uveoscleral drainage , and is independent of the intraocular pressure, the aqueous flows through here, but to a lesser extent than through the trabecular meshwork (approx. 10% of the ...
The blood–brain barrier is formed by the brain capillary endothelium and excludes from the brain 100% of large-molecule neurotherapeutics and more than 98% of all small-molecule drugs. [28] Overcoming the difficulty of delivering therapeutic agents to specific regions of the brain presents a major challenge to treatment of most brain disorders.
Long-term contact lens use can lead to alterations in corneal thickness, stromal thickness, curvature, corneal sensitivity, cell density, and epithelial oxygen uptake. . Other structural changes may include the formation of epithelial vacuoles and microcysts (containing cellular debris), corneal neovascularization, as well as the emergence of polymegethism in the corneal endoth
An increase in carbon dioxide causes tension of the arteries, often resulting from increased CO 2 output (hypercapnia), indirectly causes the blood to become more acidic; the cerebrospinal fluid pH is closely comparable to plasma, as carbon dioxide easily diffuses across the blood–brain barrier.
The breakdown of the tight endothelial junctions that make up the blood–brain barrier causes extravasation of fluid, ions, and plasma proteins, such as albumin, into the brain parenchyma. [18] Accumulation of extracellular fluid increases brain volume and then intracranial pressure causing the symptoms of cerebral edema. [1]
The blood–ocular barrier is a barrier created by endothelium of capillaries of the retina and iris, ciliary epithelium and retinal pigment epithelium. [1] It is a physical barrier between the local blood vessels and most parts of the eye itself, and stops many substances including drugs from traveling across it. [ 2 ]
Drug delivery to the brain is the process of passing therapeutically active molecules across the blood–brain barrier into the brain.This is a complex process that must take into account the complex anatomy of the brain as well as the restrictions imposed by the special junctions of the blood–brain barrier.
Exposure may also occur through skin or eye contact or by ingesting chlorine-contaminated food or water. Chlorine is a strong oxidizing element causing the hydrogen to split from water in moist tissue, resulting in nascent oxygen and hydrogen chloride that cause corrosive tissue damage.