Search results
Results from the WOW.Com Content Network
Braking distance refers to the distance a vehicle will travel from the point when its brakes are fully applied to when it comes to a complete stop. It is primarily affected by the original speed of the vehicle and the coefficient of friction between the tires and the road surface, [Note 1] and negligibly by the tires' rolling resistance and vehicle's air drag.
d MT = braking distance, m (ft) V = design speed, km/h (mph) a = deceleration rate, m/s 2 (ft/s 2) Actual braking distances are affected by the vehicle type and condition, the incline of the road, the available traction, and numerous other factors. A deceleration rate of 3.4 m/s 2 (11.2 ft/s 2) is used to determine stopping sight distance. [6]
The two-second rule is useful as it can be applied to any speed. Drivers can find it difficult to estimate the correct distance from the car in front, let alone remember the stopping distances that are required for a given speed, or to compute the equation on the fly. The two-second rule provides a simpler way of perceiving the distance.
Uses your phone sensors and GPS to measure distance, acceleration, braking patterns and driving times ... The savings vary significantly by age — drivers under 45 saved about $145 annually ...
British Railway Class 90 infobox showing brake force Brake force to weight ratio of the Class 67 is higher than some other locomotives. In the case of railways, it is important that staff are aware of the brake force of a train so sufficient brake power will be available to bring the train to a halt within the required distance from a given speed.
Headway is the distance or duration between vehicles in a transit system. The minimum headway is the shortest such distance or time achievable by a system without a reduction in the speed of vehicles. The precise definition varies depending on the application, but it is most commonly measured as the distance from the tip (front end) of one ...
For heavy duty commercial vehicles it is recommended 4-6 seconds following distance for speeds under 30 mi/h (48 km/h), and 6-8 seconds following distance for speeds over 30 mi/h (48 km/h). [9] Rear-end collisions are the number one type of traffic collisions .
0 to 100 km/h (0 to 60 mph) seconds seconds seconds acceleration: lower is better 0 to 100 to 0 mph seconds seconds seconds acceleration and braking: lower is better formerly common in British publications Autonomy: miles miles kilometers comfort, safety, economics, range higher is better Autonomous means self-governing. [1]