Search results
Results from the WOW.Com Content Network
Braking distance refers to the distance a vehicle will travel from the point when its brakes are fully applied to when it comes to a complete stop. It is primarily affected by the original speed of the vehicle and the coefficient of friction between the tires and the road surface, [Note 1] and negligibly by the tires' rolling resistance and vehicle's air drag.
Should the driver fail to react, the Pre-Safe Brake triggers autonomous vehicle braking. Pedestrian detection is active up to about 72 km/h (45 mph), and can reduce collisions with pedestrians autonomously from an initial speed of up to 50 km/h (31 mph). [44] A radar sensor in the rear bumper monitors the traffic behind the vehicle.
When the collision becomes imminent, they can take action autonomously without any driver input (by braking or steering or both). Collision avoidance by braking is appropriate at low vehicle speeds (e.g. below 50 km/h (31 mph)), while collision avoidance by steering may be more appropriate at higher vehicle speeds if lanes are clear. [3]
d MT = braking distance, m (ft) V = design speed, km/h (mph) a = deceleration rate, m/s 2 (ft/s 2) Actual braking distances are affected by the vehicle type and condition, the incline of the road, the available traction, and numerous other factors. A deceleration rate of 3.4 m/s 2 (11.2 ft/s 2) is used to determine stopping sight distance. [6]
Adaptive cruise control does not provide full autonomy: the system only provides some help to the driver, but does not drive the car by itself. [3] For example, the driver is able to set the cruise control to 55mph, if the car while traveling that speed catches up to another vehicle going only 45mph, the ACC will cause the car to automatically brake and maintain a safe distance behind the ...
The red car's driver picks a tree to judge a two-second safety buffer. The two-second rule is a rule of thumb by which a driver may maintain a safe trailing distance at any speed. [1] [2] The rule is that a driver should ideally stay at least two seconds behind any vehicle that is directly in front of his or her vehicle. It is intended for ...
0 to 100 km/h (0 to 60 mph) seconds seconds seconds acceleration: lower is better 0 to 100 to 0 mph seconds seconds seconds acceleration and braking: lower is better formerly common in British publications Autonomy: miles miles kilometers comfort, safety, economics, range higher is better Autonomous means self-governing. [1]
Emergency stopping distances can be shortened, reducing the likelihood of accidents – especially the common "nose-to-tail" incident. An electronic system designed to recognise emergency braking operation and automatically enhance braking effort improves vehicle and occupant safety, and can reduce stopping distances by up to 70 ft (21 m) at ...