Search results
Results from the WOW.Com Content Network
Deamination is the removal of an amino group from a molecule. [1] Enzymes that catalyse this reaction are called deaminases.. In the human body, deamination takes place primarily in the liver; however, it can also occur in the kidney.
Threonine ammonia-lyase (EC 4.3.1.19, systematic name L-threonine ammonia-lyase (2-oxobutanoate-forming), also commonly referred to as threonine deaminase or threonine dehydratase, is an enzyme responsible for catalyzing the conversion of L-threonine into α-ketobutyrate and ammonia:
Activation-induced cytidine deaminase, also known as AICDA, AID and single-stranded DNA cytosine deaminase, is a 24 kDa enzyme which in humans is encoded by the AICDA gene. [5] It creates mutations in DNA [6] [7] by deamination of cytosine base, which turns it into uracil (which is recognized as a thymine). In other words, it changes a C:G base ...
Acronym Finder (AF) is a free, online, searchable dictionary and database of abbreviations (acronyms, initialisms, and others) and their meanings. The entries are classified into categories such as Information Technology, Military/Government, Science, Slang/Pop Culture etc. It also contains a database of the United States and Canadian postal codes.
Adenosine deaminase (also known as adenosine aminohydrolase, or ADA) is an enzyme (EC 3.5.4.4) involved in purine metabolism. It is needed for the breakdown of adenosine from food and for the turnover of nucleic acids in tissues. Its primary function in humans is the development and maintenance of the immune system. [5]
In enzymology, an ATP deaminase (EC 3.5.4.18) is an enzyme that catalyzes the chemical reaction ATP + H 2 O ⇌ {\displaystyle \rightleftharpoons } ITP + NH 3 Thus, the two substrates of this enzyme are ATP and H 2 O , whereas its two products are ITP and NH 3 .
The most well-known health issue involving porphobilinogen deaminase is acute intermittent porphyria, an autosomal dominant genetic disorder where insufficient hydroxymethylbilane is produced, leading to a build-up of porphobilinogen in the cytoplasm. This is caused by a gene mutation that, in 90% of cases, causes decreased amounts of enzyme.
AMP deaminase deficiency (formally known as myoadenylate deaminase deficiency or MADD) is a metabolic myopathy which results in excessive AMP buildup brought on by exercise. AMP deaminase is needed to convert AMP into IMP in the purine nucleotide cycle.