enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standardized coefficient - Wikipedia

    en.wikipedia.org/wiki/Standardized_coefficient

    [2] [4] Due to the re-scaling based on sample standard deviations, any effect apparent in the standardized coefficient may be due to confounding with the particularities (especially: variability) of the involved data sample(s). Also, the interpretation or meaning of a "one standard deviation change" in the regressor may vary markedly between ...

  3. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the outcome or response variable, or a label in machine learning parlance) and one or more error-free independent variables (often called regressors, predictors, covariates, explanatory ...

  4. Moderation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Moderation_(statistics)

    This is the problem of multicollinearity in moderated regression. Multicollinearity tends to cause coefficients to be estimated with higher standard errors and hence greater uncertainty. Mean-centering (subtracting raw scores from the mean) may reduce multicollinearity, resulting in more interpretable regression coefficients.

  5. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  6. Principal component regression - Wikipedia

    en.wikipedia.org/wiki/Principal_component_regression

    In statistics, principal component regression (PCR) is a regression analysis technique that is based on principal component analysis (PCA). PCR is a form of reduced rank regression. [1] More specifically, PCR is used for estimating the unknown regression coefficients in a standard linear regression model.

  7. Partial correlation - Wikipedia

    en.wikipedia.org/wiki/Partial_correlation

    A simple way to compute the sample partial correlation for some data is to solve the two associated linear regression problems and calculate the correlation between the residuals. Let X and Y be random variables taking real values, and let Z be the n-dimensional vector-valued random variable.

  8. Regression validation - Wikipedia

    en.wikipedia.org/wiki/Regression_validation

    For example, the lack-of-fit test for assessing the correctness of the functional part of the model can aid in interpreting a borderline residual plot. One common situation when numerical validation methods take precedence over graphical methods is when the number of parameters being estimated is relatively close to the size of the data set.

  9. Unit-weighted regression - Wikipedia

    en.wikipedia.org/wiki/Unit-weighted_regression

    In this case, models are not specified and the estimates for the beta weights suffer from omitted variable bias. That is, the beta weights may change from one sample to the next, a situation sometimes called the problem of the bouncing betas. It is this problem with bouncing betas that makes unit-weighted regression a useful method.