Search results
Results from the WOW.Com Content Network
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).
The order of the differential equation is the highest order of derivative of the unknown function that appears in the differential equation. For example, an equation containing only first-order derivatives is a first-order differential equation, an equation containing the second-order derivative is a second-order differential equation, and so on.
Differential equations are an important area of mathematical analysis with many applications in science and engineering. Analysis is the branch of mathematics dealing with continuous functions, limits, and related theories, such as differentiation, integration, measure, infinite sequences, series, and analytic functions. [1] [2]
Another consideration is the relation of the finite-dimensional space to its infinite-dimensional counterpart in the examples above . A conforming element method is one in which space is a subspace of the element space for the continuous problem. The example above is such a method.
Modified nodal analysis employing DAEs is used for example in the ubiquitous SPICE family of numeric circuit simulators. [7] Similarly, Fraunhofer's Analog Insydes Mathematica package can be used to derive DAEs from a netlist and then simplify or even solve the equations symbolically in some cases.
In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable.As with any other DE, its unknown(s) consists of one (or more) function(s) and involves the derivatives of those functions. [1]
In applied mathematics, in particular the context of nonlinear system analysis, a phase plane is a visual display of certain characteristics of certain kinds of differential equations; a coordinate plane with axes being the values of the two state variables, say (x, y), or (q, p) etc. (any pair of variables).
For example, Newton's second law, which describes the relationship between acceleration and force, can be stated as the ordinary differential equation =. The heat equation in one space variable, which describes how heat diffuses through a straight rod, is the partial differential equation