Search results
Results from the WOW.Com Content Network
Domain coloring plot of the function f(x) = (x 2 − 1)(x − 2 − i) 2 / x 2 + 2 + 2i , using the structured color function described below. In complex analysis, domain coloring or a color wheel graph is a technique for visualizing complex functions by assigning a color to each point of the complex plane. By assigning points on the ...
A list edge-coloring is a choice of a color for each edge, from its list of allowed colors; a coloring is proper if no two adjacent edges receive the same color. A graph G is k-edge-choosable if every instance of list edge-coloring that has G as its underlying graph and that provides at least k allowed colors for each edge of G has
Given a graph G and given a set L(v) of colors for each vertex v (called a list), a list coloring is a choice function that maps every vertex v to a color in the list L(v). As with graph coloring, a list coloring is generally assumed to be proper , meaning no two adjacent vertices receive the same color.
In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, [1] is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem (named after Arthur Cayley ), and uses a specified set of generators for the group.
Color representation of the Dirichlet eta function. It is generated as a Matplotlib plot using a version of the Domain coloring method. [1]In mathematics, in the area of analytic number theory, the Dirichlet eta function is defined by the following Dirichlet series, which converges for any complex number having real part > 0: = = = + +.
The equitable chromatic number of a graph G is the smallest number k such that G has an equitable coloring with k colors. But G might not have equitable colorings for some larger numbers of colors; the equitable chromatic threshold of G is the smallest k such that G has equitable colorings for any number of colors greater than or equal to k. [2]
c i (xy i) not defined, c i (e)=c 0 (e) otherwise. Then c i is a proper (Δ+1)-edge-coloring of G − xy i due to definition of y 0,...,y k. Also, note that the missing colors in x are the same with respect to c i for all 0 ≤ i ≤ k. Let β be the color missing in y k with respect to c 0, then β is also missing in y k with respect to c i ...
To get colorful images of the set, the assignment of a color to each value of the number of executed iterations can be made using one of a variety of functions (linear, exponential, etc.). One practical way, without slowing down calculations, is to use the number of executed iterations as an entry to a palette initialized at startup.