Search results
Results from the WOW.Com Content Network
The register width of a processor determines the range of values that can be represented in its registers. Though the vast majority of computers can perform multiple-precision arithmetic on operands in memory, allowing numbers to be arbitrarily long and overflow to be avoided, the register width limits the sizes of numbers that can be operated on (e.g., added or subtracted) using a single ...
It is therefore the maximum value for variables declared as integers (e.g., as int) in many programming languages. The data type time_t, used on operating systems such as Unix, is a signed integer counting the number of seconds since the start of the Unix epoch (midnight UTC of 1 January 1970), and is often implemented as a 32-bit integer. [8]
The number 4,294,967,295, equivalent to the hexadecimal value FFFFFFFF 16, is the maximum value for a 32-bit unsigned integer in computing. [6] It is therefore the maximum value for a variable declared as an unsigned integer (usually indicated by the unsigned codeword) in many programming languages running on modern computers. The presence of ...
Julia: the built-in BigFloat and BigInt types provide arbitrary-precision floating point and integer arithmetic respectively. newRPL: integers and floats can be of arbitrary precision (up to at least 2000 digits); maximum number of digits configurable (default 32 digits) Nim: bigints and multiple GMP bindings.
Saturation arithmetic is a version of arithmetic in which all operations, such as addition and multiplication, are limited to a fixed range between a minimum and maximum value. If the result of an operation is greater than the maximum, it is set ("clamped") to the maximum; if it is below the minimum, it is clamped to the minimum. The name comes ...
The floor of x is also called the integral part, integer part, greatest integer, or entier of x, and was historically denoted [x] (among other notations). [2] However, the same term, integer part, is also used for truncation towards zero, which differs from the floor function for negative numbers. For n an integer, ⌊n⌋ = ⌈n⌉ = n.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
It also provides the macros FLT_EPSILON, DBL_EPSILON, LDBL_EPSILON, which represent the positive difference between 1.0 and the next greater representable number in the corresponding type (i.e. the ulp of one). [9] The Java standard library provides the functions Math.ulp(double) and Math.ulp(float). They were introduced with Java 1.5.