enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. XOR gate - Wikipedia

    en.wikipedia.org/wiki/XOR_gate

    XOR gate (sometimes EOR, or EXOR and pronounced as Exclusive OR) is a digital logic gate that gives a true (1 or HIGH) output when the number of true inputs is odd. An XOR gate implements an exclusive or ( ↮ {\displaystyle \nleftrightarrow } ) from mathematical logic ; that is, a true output results if one, and only one, of the inputs to the ...

  3. Exclusive or - Wikipedia

    en.wikipedia.org/wiki/Exclusive_or

    XOR is used in RAID 3–6 for creating parity information. For example, RAID can "back up" bytes 10011100 2 and 01101100 2 from two (or more) hard drives by XORing the just mentioned bytes, resulting in (11110000 2) and writing it to another drive. Under this method, if any one of the three hard drives are lost, the lost byte can be re-created ...

  4. Controlled NOT gate - Wikipedia

    en.wikipedia.org/wiki/Controlled_NOT_gate

    The classical analog of the CNOT gate is a reversible XOR gate. How the CNOT gate can be used (with Hadamard gates) in a computation.. In computer science, the controlled NOT gate (also C-NOT or CNOT), controlled-X gate, controlled-bit-flip gate, Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer.

  5. Logic gate - Wikipedia

    en.wikipedia.org/wiki/Logic_gate

    Logic gates can be made from quantum mechanical effects, see quantum logic gate. Photonic logic gates use nonlinear optical effects. In principle any method that leads to a gate that is functionally complete (for example, either a NOR or a NAND gate) can be used to make any kind of digital logic circuit. Note that the use of 3-state logic for ...

  6. OR-AND-invert - Wikipedia

    en.wikipedia.org/wiki/OR-AND-invert

    Toggle Examples subsection. 2.1 2-1 OAI-gate. 2.2 2-2 OAI gate. 3 Realization. ... Implementation of an XOR gate using a 2-2-OAI gate. References This page was last ...

  7. Adder (electronics) - Wikipedia

    en.wikipedia.org/wiki/Adder_(electronics)

    The simplest half-adder design, pictured on the right, incorporates an XOR gate for and an AND gate for . The Boolean logic for the sum (in this case S {\displaystyle S} ) will be A ⊕ B {\displaystyle A\oplus B} whereas for the carry ( C {\displaystyle C} ) will be A ⋅ B {\displaystyle A\cdot B} .

  8. Truth table - Wikipedia

    en.wikipedia.org/wiki/Truth_table

    A truth table has one column for each input variable (for example, A and B), and one final column showing all of the possible results of the logical operation that the table represents (for example, A XOR B). Each row of the truth table contains one possible configuration of the input variables (for instance, A=true, B=false), and the result of ...

  9. Linear-feedback shift register - Wikipedia

    en.wikipedia.org/wiki/Linear-feedback_shift_register

    A standard LFSR has a single XOR or XNOR gate, where the input of the gate is connected to several "taps" and the output is connected to the input of the first flip-flop. A MISR has the same structure, but the input to every flip-flop is fed through an XOR/XNOR gate. For example, a 4-bit MISR has a 4-bit parallel output and a 4-bit parallel input.