Search results
Results from the WOW.Com Content Network
The distance between any two points on the real line is the absolute value of the numerical difference of their coordinates, their absolute difference.Thus if and are two points on the real line, then the distance between them is given by: [1]
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
In mathematics, a Euclidean distance matrix is an n×n matrix representing the spacing of a set of n points in Euclidean space. For points x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\ldots ,x_{n}} in k -dimensional space ℝ k , the elements of their Euclidean distance matrix A are given by squares of distances between them.
In either the coordinate or vector formulations, one may verify that the given point lies on the given plane by plugging the point into the equation of the plane. To see that it is the closest point to the origin on the plane, observe that p {\displaystyle \mathbf {p} } is a scalar multiple of the vector v {\displaystyle \mathbf {v} } defining ...
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...
The geometric-distance matrix is a different type of distance matrix that is based on the graph-theoretical distance matrix of a molecule to represent and graph the 3-D molecule structure. [8] The geometric-distance matrix of a molecular structure G is a real symmetric n x n matrix defined in the same way as a 2-D matrix.
Menger extended Cayley's algebraic results to propose a new axiom of metric spaces using the concepts of distance geometry up to congruence equivalence, known as the Cayley–Menger determinant. This ended up generalising one of the first discoveries in distance geometry, Heron's formula, which computes the area of a triangle given its side ...