Search results
Results from the WOW.Com Content Network
One of the most commonly encountered CRC polynomials is known as CRC-32, used by (among others) Ethernet, FDDI, ZIP and other archive formats, and PNG image format. Its polynomial can be written msbit-first as 0x04C11DB7, or lsbit-first as 0xEDB88320. This is a practical example for the CRC-32 variant of CRC. [5]
To compute an n-bit binary CRC, line the bits representing the input in a row, and position the (n + 1)-bit pattern representing the CRC's divisor (called a "polynomial") underneath the left end of the row. In this example, we shall encode 14 bits of message with a 3-bit CRC, with a polynomial x 3 + x + 1.
32 or 64 bits add,shift,xor MurmurHash: 32, 64, or 128 bits product/rotation Fast-Hash [3] 32 or 64 bits xorshift operations SpookyHash 32, 64, or 128 bits see Jenkins hash function: CityHash [4] 32, 64, 128, or 256 bits FarmHash [5] 32, 64 or 128 bits MetroHash [6] 64 or 128 bits numeric hash (nhash) [7] variable division/modulo xxHash [8] 32 ...
The "crc.list" file indicates a checksum file containing 32-bit CRC checksums in brik format. As of 2012, best practice recommendations is to use SHA-2 or SHA-3 to generate new file integrity digests; and to accept MD5 and SHA-1 digests for backward compatibility if stronger digests are not available.
A CRC is a checksum in a strict mathematical sense, as it can be expressed as the weighted modulo-2 sum of per-bit syndromes, but that word is generally reserved more specifically for sums computed using larger moduli, such as 10, 256, or 65535.
cksum is a command in Unix and Unix-like operating systems that generates a checksum value for a file or stream of data. The cksum command reads each file given in its arguments, or standard input if no arguments are provided, and outputs the file's 32-bit cyclic redundancy check (CRC) checksum and byte count. [1]
When the data word is divided into 32-bit blocks, two 32-bit sums result and are combined into a 64-bit Fletcher checksum. Usually, the second sum will be multiplied by 2 32 and added to the simple checksum, effectively stacking the sums side-by-side in a 64-bit word with the simple checksum at the least significant end. This algorithm is then ...
Will change OperandSize from 16-bit to 32-bit if CS.D=0, or from 32-bit to 16-bit if CS.D=1. 67h: AddressSize override. Will change AddressSize from 16-bit to 32-bit if CS.D=0, or from 32-bit to 16-bit if CS.D=1. The 80386 also introduced the two new segment registers FS and GS as well as the x86 control, debug and test registers.