Search results
Results from the WOW.Com Content Network
If the function to the left of the dot is "∘" (signifying null) then the composite function is an outer product, otherwise it is an inner product. An inner product intended for conventional matrix multiplication uses the + and × functions, replacing these with other dyadic functions can result in useful alternative operations.
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
The cross product operation is an example of a vector rank function because it operates on vectors, not scalars. Matrix multiplication is an example of a 2-rank function, because it operates on 2-dimensional objects (matrices). Collapse operators reduce the dimensionality of an input data array by one or more dimensions. For example, summing ...
Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]
In MATLAB, the function kron (A, B) is used for this product. These often generalize to multi-dimensional arguments, and more than two arguments. In the Python library NumPy, the outer product can be computed with function np.outer(). [8] In contrast, np.kron results in a flat array.
Note how the use of A[i][j] with multi-step indexing as in C, as opposed to a neutral notation like A(i,j) as in Fortran, almost inevitably implies row-major order for syntactic reasons, so to speak, because it can be rewritten as (A[i])[j], and the A[i] row part can even be assigned to an intermediate variable that is then indexed in a separate expression.
The end-loop marker specifies the name of the index variable, which must correspond to the name of the index variable at the start of the for-loop. Some languages (PL/I, Fortran 95, and later) allow a statement label at the start of a for-loop that can be matched by the compiler against the same text on the corresponding end-loop statement.
Another somewhat contrived special case of this is string concatenation of a list of strings. In C, for example, the cost of concatenating two strings of length m and n using strcat is O(m + n), since we need O(m) time to find the end of the first string and O(n) time to copy the second string onto the end of it. Using this cost function, we ...