enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian quadrature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_quadrature

    As the integrand is the third-degree polynomial y(x) = 7x 3 – 8x 2 – 3x + 3, the 2-point Gaussian quadrature rule even returns an exact result. In numerical analysis , an n -point Gaussian quadrature rule , named after Carl Friedrich Gauss , [ 1 ] is a quadrature rule constructed to yield an exact result for polynomials of degree 2 n − 1 ...

  3. Gauss–Legendre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_quadrature

    Carl Friedrich Gauss was the first to derive the Gauss–Legendre quadrature rule, doing so by a calculation with continued fractions in 1814. [4] He calculated the nodes and weights to 16 digits up to order n=7 by hand. Carl Gustav Jacob Jacobi discovered the connection between the quadrature rule and the orthogonal family of Legendre polynomials.

  4. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    The Gauss–Legendre methods use the points of Gauss–Legendre quadrature as collocation points. The Gauss–Legendre method based on s points has order 2s. [2] All Gauss–Legendre methods are A-stable. [3] In fact, one can show that the order of a collocation method corresponds to the order of the quadrature rule that one would get using the ...

  5. Gauss–Kronrod quadrature formula - Wikipedia

    en.wikipedia.org/wiki/Gauss–Kronrod_quadrature...

    If the interval [a, b] is subdivided, the Gauss evaluation points of the new subintervals never coincide with the previous evaluation points (except at the midpoint for odd numbers of evaluation points), and thus the integrand must be evaluated at every point. Gauss–Kronrod formulas are extensions of the Gauss quadrature formulas generated by ...

  6. Gauss–Laguerre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Laguerre_quadrature

    In numerical analysis Gauss–Laguerre quadrature (named after Carl Friedrich Gauss and Edmond Laguerre) is an extension of the Gaussian quadrature method for approximating the value of integrals of the following kind: + (). In this case

  7. Gauss–Legendre method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_method

    Gauss–Legendre methods are implicit Runge–Kutta methods. More specifically, they are collocation methods based on the points of Gauss–Legendre quadrature. The Gauss–Legendre method based on s points has order 2s. [1] All Gauss–Legendre methods are A-stable. [2] The Gauss–Legendre method of order two is the implicit midpoint rule.

  8. Gauss–Jacobi quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Jacobi_quadrature

    Thus, Gauss–Jacobi quadrature can be used to approximate integrals with singularities at the end points. Gauss–Legendre quadrature is a special case of Gauss–Jacobi quadrature with α = β = 0. Similarly, the Chebyshev–Gauss quadrature of the first (second) kind arises when one takes α = β = −0.5 (+0.5).

  9. Newton–Cotes formulas - Wikipedia

    en.wikipedia.org/wiki/Newton–Cotes_formulas

    It is assumed that the value of a function f defined on [,] is known at + equally spaced points: < < <.There are two classes of Newton–Cotes quadrature: they are called "closed" when = and =, i.e. they use the function values at the interval endpoints, and "open" when > and <, i.e. they do not use the function values at the endpoints.