Search results
Results from the WOW.Com Content Network
Curve of the Michaelis–Menten equation labelled in accordance with IUBMB recommendations. In biochemistry, Michaelis–Menten kinetics, named after Leonor Michaelis and Maud Menten, is the simplest case of enzyme kinetics, applied to enzyme-catalysed reactions of one substrate and one product.
Eadie–Hofstee plot of v against v/a for Michaelis–Menten kinetics. In biochemistry, an Eadie–Hofstee plot (or Eadie–Hofstee diagram) is a graphical representation of the Michaelis–Menten equation in enzyme kinetics. It has been known by various different names, including Eadie plot, Hofstee plot and Augustinsson plot.
Reversible Michaelis–Menten kinetics, using the reversible form of the Michaelis–Menten equation, is therefore important when developing computer models of cellular processes involving enzymes. In enzyme kinetics, the Michaelis–Menten kinetics kinetic rate law that describes the conversion of one substrate to one product, is often ...
It is generally assumed that this behavior is indicative of both compounds binding at the same site, but that is not strictly necessary. As with the derivation of the Michaelis–Menten equation, assume that the system is at steady-state, i.e. the concentration of each of the enzyme species is not changing.
The Hill equation reflects the occupancy of macromolecules: the fraction that is saturated or bound by the ligand. [1] [2] [nb 1] This equation is formally equivalent to the Langmuir isotherm. [3] Conversely, the Hill equation proper reflects the cellular or tissue response to the ligand: the physiological output of the system, such as muscle ...
The best known plots of the Michaelis–Menten equation, including the double-reciprocal plot of / against /, [2] the Hanes plot of / against , [3] and the Eadie–Hofstee plot [4] [5] of against / are all plots in observation space, with each observation represented by a point, and the parameters determined from the slope and intercepts of the lines that result.
A plot depicting the initial reaction rate versus substrate concentration as modeled by the Michaelis-Menten equation (solid line) and the Haldane equation for substrate inhibition (dotted line). One of the most well known equations to describe single-substrate enzyme kinetics is the Michaelis-Menten equation.
This is produced by taking the reciprocal of both sides of the Michaelis–Menten equation. As shown on the right, this is a linear form of the Michaelis–Menten equation and produces a straight line with the equation y = mx + c with a y-intercept equivalent to 1/V max and an x-intercept of the graph representing −1/K M.