enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. CORDIC - Wikipedia

    en.wikipedia.org/wiki/CORDIC

    CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...

  3. Householder's method - Wikipedia

    en.wikipedia.org/wiki/Householder's_method

    The Padé approximation has the form (+) = + + + + + (+). The rational function has a zero at h = − a 0 {\displaystyle h=-a_{0}} . Just as the Taylor polynomial of degree d has d + 1 coefficients that depend on the function f , the Padé approximation also has d + 1 coefficients dependent on f and its derivatives.

  4. Halley's method - Wikipedia

    en.wikipedia.org/wiki/Halley's_method

    In numerical analysis, Halley's method is a root-finding algorithm used for functions of one real variable with a continuous second derivative. Edmond Halley was an English mathematician and astronomer who introduced the method now called by his name.

  5. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Many root-finding processes work by interpolation. This consists in using the last computed approximate values of the root for approximating the function by a polynomial of low degree, which takes the same values at these approximate roots. Then the root of the polynomial is computed and used as a new approximate value of the root of the ...

  6. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.

  7. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges. This algorithm is a stripped-down version of the Jacobi transformation method of matrix diagonalization. The method is named after Carl Gustav Jacob Jacobi.

  8. Secant method - Wikipedia

    en.wikipedia.org/wiki/Secant_method

    In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method, so it is considered a quasi-Newton method.

  9. Ridders' method - Wikipedia

    en.wikipedia.org/wiki/Ridders'_method

    In numerical analysis, Ridders' method is a root-finding algorithm based on the false position method and the use of an exponential function to successively approximate a root of a continuous function (). The method is due to C. Ridders.

  1. Related searches approx value of root 3 by 4 calculator matrix python list tutorial

    approx value of root 3 by 4 calculator matrix python list tutorial point