Search results
Results from the WOW.Com Content Network
A graph with a loop on vertex 1. In graph theory, a loop (also called a self-loop or a buckle) is an edge that connects a vertex to itself. A simple graph contains no loops. Depending on the context, a graph or a multigraph may be defined so as to either allow or disallow the presence of loops (often in concert with allowing or disallowing ...
A graph with a loop having vertices labeled by degree. In graph theory, the degree (or valency) of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. [1]
The degree or valency of a vertex is the number of edges that are incident to it; for graphs with loops, a loop is counted twice. In a graph of order n, the maximum degree of each vertex is n − 1 (or n + 1 if loops are allowed, because a loop contributes 2 to the degree), and the maximum number of edges is n(n − 1)/2 (or n(n + 1)/2 if loops ...
The degree or valency of a vertex is the number of edges that are incident to it, where a loop is counted twice. The degree of a graph is the maximum of the degrees of its vertices. In an undirected simple graph of order n, the maximum degree of each vertex is n − 1 and the maximum size of the graph is n(n − 1) / 2 .
A directed graph has an Eulerian trail if and only if at most one vertex has − = 1, at most one vertex has (in-degree) − (out-degree) = 1, every other vertex has equal in-degree and out-degree, and all of its vertices with nonzero degree belong to a single connected component of the underlying undirected graph. [6]
A biregular graph is a bipartite graph in which there are only two different vertex degrees, one for each set of the vertex bipartition. block 1. A block of a graph G is a maximal subgraph which is either an isolated vertex, a bridge edge, or a 2-connected subgraph. If a block is 2-connected, every pair of vertices in it belong to a common cycle.
where the degree of a vertex counts the number of times an edge terminates at that vertex. In an undirected graph , this means that each loop increases the degree of a vertex by two. In a directed graph , the term degree may refer either to indegree (the number of incoming edges at each vertex) or outdegree (the number of outgoing edges at ...
The number of vertices must be doubled because each undirected edge corresponds to two directed arcs and thus the degree of a vertex in the directed graph is twice the degree in the undirected graph. Rahman– Kaykobad (2005) — A simple graph with n vertices has a Hamiltonian path if, for every non-adjacent vertex pairs the sum of their ...