Search results
Results from the WOW.Com Content Network
Relationship of the atmosphere and ionosphere. The ionosphere (/ aɪ ˈ ɒ n ə ˌ s f ɪər /) [1] [2] is the ionized part of the upper atmosphere of Earth, from about 48 km (30 mi) to 965 km (600 mi) above sea level, [3] a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar ...
Layers of the ionosphere.The Kennelly–Heaviside layer is the E region. The Heaviside layer, [1] [2] sometimes called the Kennelly–Heaviside layer, [3] [4] named after Arthur E. Kennelly and Oliver Heaviside, is a layer of ionised gas occurring roughly between 90km and 150 km (56 and 93 mi) above the ground — one of several layers in the Earth's ionosphere.
Satellite data hasn’t always been able to capture the full picture of what’s occurring in the ionosphere, but NASA’s GOLD mission has a bird’s-eye view of the atmospheric layer over the ...
The F 2 layer exists from about 220 to 800 km (140 to 500 miles) above the surface of the Earth. The F 2 layer is the principal reflecting layer for HF radio communications during both day and night. The horizon-limited distance for one-hop F 2 propagation is usually around 4,000 km (2,500 miles). The F 2 layer has about 10 6 e/cm 3. However ...
SpaceX’s rocket explosion in November 2023 created a massive hole in the Earth's ionosphere, providing scientists with a rare opportunity to study its effects.
The upper part of the heterosphere is composed almost completely of hydrogen, the lightest element. [29] The planetary boundary layer is the part of the troposphere that is closest to Earth's surface and is directly affected by it, mainly through turbulent diffusion. During the day the planetary boundary layer usually is well-mixed, whereas at ...
Earth’s innermost layer is a hot, solid ball of metal surrounded by a liquid metal outer core. For decades, planetary scientists suspected that the solid inner core deformed over time as it spun.
The ionosphere is a region of the upper atmosphere, from about 80 km (50 miles) to 1000 km (600 miles) in altitude, where neutral air is ionized by solar photons, solar particles, and cosmic rays. When high-frequency signals enter the ionosphere at a low angle they are bent back towards the Earth by the ionized layer. [1]