Search results
Results from the WOW.Com Content Network
Default generator in R and the Python language starting from version 2.3. Xorshift: 2003 G. Marsaglia [26] It is a very fast sub-type of LFSR generators. Marsaglia also suggested as an improvement the xorwow generator, in which the output of a xorshift generator is added with a Weyl sequence.
In Python, a generator can be thought of as an iterator that contains a frozen stack frame. Whenever next() is called on the iterator, Python resumes the frozen frame, which executes normally until the next yield statement is reached. The generator's frame is then frozen again, and the yielded value is returned to the caller.
The Mersenne Twister is a general-purpose pseudorandom number generator (PRNG) developed in 1997 by Makoto Matsumoto (松本 眞) and Takuji Nishimura (西村 拓士). [1] [2] Its name derives from the choice of a Mersenne prime as its period length. The Mersenne Twister was designed specifically to rectify most of the flaws found in older PRNGs.
The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8]. A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation.
Since 7 October 2024, Python 3.13 is the latest stable release, and it and, for few more months, 3.12 are the only releases with active support including for bug fixes (as opposed to just for security) and Python 3.9, [55] is the oldest supported version of Python (albeit in the 'security support' phase), due to Python 3.8 reaching end-of-life.
Lucas numbers have L 1 = 1, L 2 = 3, and L n = L n−1 + L n−2. Primefree sequences use the Fibonacci recursion with other starting points to generate sequences in which all numbers are composite. Letting a number be a linear function (other than the sum) of the 2 preceding numbers.
Introduced in Python 2.2 as an optional feature and finalized in version 2.3, generators are Python's mechanism for lazy evaluation of a function that would otherwise return a space-prohibitive or computationally intensive list. This is an example to lazily generate the prime numbers:
In this example, we reformulate a generating function example given in Section 7.3 of Concrete Mathematics (see also Section 7.1 of the same reference for pretty pictures of generating function series). In particular, suppose that we seek the total number of ways (denoted U n) to tile a 3-by-n rectangle with