enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...

  3. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    A was referred to as the frequency factor (now called the pre-exponential coefficient), and E a is regarded as the activation energy. By the early 20th century many had accepted the Arrhenius equation, but the physical interpretation of A and E a remained vague.

  4. Activation energy - Wikipedia

    en.wikipedia.org/wiki/Activation_energy

    In the Arrhenius equation, the term activation energy (Ea) is used to describe the energy required to reach the transition state, and the exponential relationship k = A exp (−Ea/RT) holds. In transition state theory, a more sophisticated model of the relationship between reaction rates and the transition state, a superficially similar ...

  5. Bell–Evans–Polanyi principle - Wikipedia

    en.wikipedia.org/wiki/Bell–Evans–Polanyi...

    The Evans–Polanyi model is a linear energy relationship that serves as an efficient way to calculate activation energy of many reactions within a distinct family. The activation energy may be used to characterize the kinetic rate parameter of a given reaction through application of the Arrhenius equation. The Evans–Polanyi model assumes ...

  6. Charge transport mechanisms - Wikipedia

    en.wikipedia.org/wiki/Charge_transport_mechanisms

    While in atomic solids transport is intra -molecular, also known as band transport, in molecular solids the transport is inter -molecular, also known as hopping transport. The two different mechanisms result in different charge mobilities. In disordered solids, disordered potentials result in weak localization effects (traps), which reduce the ...

  7. Time–temperature superposition - Wikipedia

    en.wikipedia.org/wiki/Time–temperature...

    The time–temperature shift factor can also be described in terms of the activation energy (E a). By plotting the shift factor a T versus the reciprocal of temperature (in K), the slope of the curve can be interpreted as E a /k, where k is the Boltzmann constant = 8.64x10 −5 eV/K and the activation energy is expressed in terms of eV.

  8. Thermal desorption spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Thermal_desorption...

    Thermal desorption is described by the Polanyi–Wigner equation derived from the Arrhenius equation. where. the desorption rate [mol/ (cm 2 s)] as a function of , order of desorption, surface coverage, pre-exponential factor [Hz] as a function of , activation energy of desorption [kJ/mol] as a function of , gas constant [J/ (K mol ...

  9. Arrhenius plot - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_plot

    Arrhenius plot. In chemical kinetics, an Arrhenius plot displays the logarithm of a reaction rate constant, ( , ordinate axis) plotted against reciprocal of the temperature ( , abscissa). [1] Arrhenius plots are often used to analyze the effect of temperature on the rates of chemical reactions. For a single rate-limited thermally activated ...