Search results
Results from the WOW.Com Content Network
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface. Right: The reduction in flux passing through a surface can be visualized by reduction in F or dS equivalently (resolved into components, θ is angle to ...
Given a flux according to the electromagnetism definition, the corresponding flux density, if that term is used, refers to its derivative along the surface that was integrated. By the Fundamental theorem of calculus , the corresponding flux density is a flux according to the transport definition.
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
In quantum mechanics, the probability current (sometimes called probability flux) is a mathematical quantity describing the flow of probability.Specifically, if one thinks of probability as a heterogeneous fluid, then the probability current is the rate of flow of this fluid.
A Magic Triangle image mnemonic - when the terms of Ohm's law are arranged in this configuration, covering the unknown gives the formula in terms of the remaining parameters. It can be adapted to similar equations e.g. F = ma, v = fλ, E = mcΔT, V = π r 2 h and τ = rF sinθ.
In physics (specifically electromagnetism), Gauss's law, also known as Gauss's flux theorem (or sometimes Gauss's theorem), is one of Maxwell's equations. It is an application of the divergence theorem , and it relates the distribution of electric charge to the resulting electric field .
Mathematically, mass flux is defined as the limit =, where = = is the mass current (flow of mass m per unit time t) and A is the area through which the mass flows.. For mass flux as a vector j m, the surface integral of it over a surface S, followed by an integral over the time duration t 1 to t 2, gives the total amount of mass flowing through the surface in that time (t 2 − t 1): = ^.
To define the heat flux at a certain point in space, one takes the limiting case where the size of the surface becomes infinitesimally small. Heat flux is often denoted , the subscript q specifying heat flux, as opposed to mass or momentum flux. Fourier's law is an important application of these concepts.