Ad
related to: hydrochloric acid and iron oxide
Search results
Results from the WOW.Com Content Network
Iron(III) oxide is insoluble in water but dissolves readily in strong acid, e.g., hydrochloric and sulfuric acids. It also dissolves well in solutions of chelating agents such as EDTA and oxalic acid. Heating iron(III) oxides with other metal oxides or carbonates yields materials known as ferrates (ferrate (III)): [18] ZnO + Fe 2 O 3 → Zn(FeO ...
However, it does not react with concentrated nitric acid and other oxidizing acids due to the formation of an impervious oxide layer, which can nevertheless react with hydrochloric acid. [10] High purity iron, called electrolytic iron, is considered to be resistant to rust, due to its oxide layer.
The addition of ferric chloride, FeCl 3, to well water immediately after the well at the influent to the treatment plant creates ferric hydroxide, Fe(OH) 3, and hydrochloric acid, HCl. 3H 2 O + FeCl 3 → Fe(OH) 3 + 3HCl. Fe(OH) 3 in water is a strong adsorbent of arsenate, As(V), provided that the pH is low.
Hydrochloric acid is a strong inorganic acid that is used in many industrial processes such as refining metal. The application often determines the required product quality. [25] Hydrogen chloride, not hydrochloric acid, is used more widely in industrial organic chemistry, e.g. for vinyl chloride and dichloroethane. [8]
The commercially most relevant field of application for HCl regeneration processes is the recovery of HCl from waste pickle liquors from carbon-steel pickling lines. Other applications include the production of metal oxides such as, but not limited, to Al 2 O 3 and MgO, as well as rare-earth oxides, by pyrohydrolysis of aqueous metal chloride or rare-earth chloride solutions.
Since the 1960s, hydrochloric pickling sludge is often treated in a hydrochloric acid regeneration system, which recovers some of the hydrochloric acid and ferric oxide. The rest must still be neutralized and disposed of in land fills [10] or managed as a hazardous waste based on the waste profile analysis. [9]
Aqueous solutions of iron(III) chloride are also produced industrially from a number of iron precursors, including iron oxides: Fe 2 O 3 + 6 HCl + 9 H 2 O → 2 FeCl 3 (H 2 O) 6. In complementary route, iron metal can be oxidized by hydrochloric acid followed by chlorination: [10] Fe + 2 HCl → FeCl 2 + H 2 FeCl 2 + 0.5 Cl 2 + 6 H 2 O → FeCl ...
Iron(II) oxide or ferrous oxide is the inorganic compound with the formula FeO. Its mineral form is known as wüstite . [ 3 ] [ 4 ] One of several iron oxides , it is a black-colored powder that is sometimes confused with rust , the latter of which consists of hydrated iron(III) oxide (ferric oxide).
Ad
related to: hydrochloric acid and iron oxide