Search results
Results from the WOW.Com Content Network
The predicate agrees with the comparison predicates (see section § Comparison predicates) when one floating-point number is less than the other. The main differences are: [34] NaN is sortable. NaN is treated as if it had a larger absolute value than Infinity (or any other floating-point numbers). (−NaN < −Infinity; +Infinity < +NaN.)
In computing, NaN (/ n æ n /), standing for Not a Number, is a particular value of a numeric data type (often a floating-point number) which is undefined as a number, such as the result of 0/0. Systematic use of NaNs was introduced by the IEEE 754 floating-point standard in 1985, along with the representation of other non-finite quantities ...
In a subnormal number, since the exponent is the least that it can be, zero is the leading significant digit (0.m 1 m 2 m 3...m p−2 m p−1), allowing the representation of numbers closer to zero than the smallest normal number. A floating-point number may be recognized as subnormal whenever its exponent has the least possible value.
[5] [page needed] It says that, if the topological degree of a function f on a rectangle is non-zero, then the rectangle must contain at least one root of f. This criterion is the basis for several root-finding methods, such as those of Stenger [ 6 ] and Kearfott. [ 7 ]
0 01111110 11111111111111111111111 2 = 3f7f ffff 16 = 1 − 2 −24 ≈ 0.999999940395355225 (largest number less than one) 0 01111111 00000000000000000000000 2 = 3f80 0000 16 = 1 (one) 0 01111111 00000000000000000000001 2 = 3f80 0001 16 = 1 + 2 −23 ≈ 1.00000011920928955 (smallest number larger than one)
In languages such as C, relational operators return the integers 0 or 1, where 0 stands for false and any non-zero value stands for true. An expression created using a relational operator forms what is termed a relational expression or a condition. Relational operators can be seen as special cases of logical predicates.
The decimal number 0.15625 10 represented in binary is 0.00101 2 (that is, 1/8 + 1/32). (Subscripts indicate the number base .) Analogous to scientific notation , where numbers are written to have a single non-zero digit to the left of the decimal point, we rewrite this number so it has a single 1 bit to the left of the "binary point".
Because of the reason above, it is possible to represent values like 1 + 2 −1074, which is the smallest representable number greater than 1. In addition to the double-double arithmetic, it is also possible to generate triple-double or quad-double arithmetic if higher precision is required without any higher precision floating-point library.