Search results
Results from the WOW.Com Content Network
Schematic illustration of idealized fiber arrays and their corresponding unit cells. In the theory of composite materials, the representative elementary volume (REV) (also called the representative volume element (RVE) or the unit cell) is the smallest volume over which a measurement can be made that will yield a value representative of the whole. [1]
This is because the n-dimensional dV element is in general a parallelepiped in the new coordinate system, and the n-volume of a parallelepiped is the determinant of its edge vectors. The Jacobian can also be used to determine the stability of equilibria for systems of differential equations by approximating behavior near an equilibrium point.
Consider the linear subspace of the n-dimensional Euclidean space R n that is spanned by a collection of linearly independent vectors , …,. To find the volume element of the subspace, it is useful to know the fact from linear algebra that the volume of the parallelepiped spanned by the is the square root of the determinant of the Gramian matrix of the : (), = ….
The first step away from slide rules was the introduction of relatively inexpensive electronic desktop scientific calculators. These included the Wang Laboratories LOCI-2, [ 31 ] [ 32 ] introduced in 1965, which used logarithms for multiplication and division; and the Hewlett-Packard HP 9100A , introduced in 1968. [ 33 ]
A solution of a linear system is an assignment of values to the variables ,, …, such that each of the equations is satisfied. The set of all possible solutions is called the solution set. [5] A linear system may behave in any one of three possible ways: The system has infinitely many solutions.
The first systematic methods for solving linear systems used determinants and were first considered by Leibniz in 1693. In 1750, Gabriel Cramer used them for giving explicit solutions of linear systems, now called Cramer's rule. Later, Gauss further described the method of elimination, which was initially listed as an advancement in geodesy. [5]
In systems theory, a linear system is a mathematical model of a system based on the use of a linear operator. Linear systems typically exhibit features and properties that are much simpler than the nonlinear case. As a mathematical abstraction or idealization, linear systems find important applications in automatic control theory, signal ...
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.