enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ranking SVM - Wikipedia

    en.wikipedia.org/wiki/Ranking_SVM

    In machine learning, a ranking SVM is a variant of the support vector machine algorithm, which is used to solve certain ranking problems (via learning to rank).The ranking SVM algorithm was published by Thorsten Joachims in 2002. [1]

  3. Ranking - Wikipedia

    en.wikipedia.org/wiki/Ranking

    For example, if the numerical data 3.4, 5.1, 2.6, 7.3 are observed, the ranks of these data items would be 2, 3, 1 and 4 respectively. As another example, the ordinal data hot, cold, warm would be replaced by 3, 1, 2. In these examples, the ranks are assigned to values in ascending order, although descending ranks can also be used.

  4. Kruskal–Wallis test - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Wallis_test

    The Kruskal–Wallis test by ranks, Kruskal–Wallis test (named after William Kruskal and W. Allen Wallis), or one-way ANOVA on ranks is a non-parametric statistical test for testing whether samples originate from the same distribution. [1] [2] [3] It is used for comparing two or more independent samples of equal or different sample sizes.

  5. Spearman's rank correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Spearman's_rank_correlation...

    The Spearman's rank correlation can then be computed, based on the count matrix , using linear algebra operations (Algorithm 2 [18]). Note that for discrete random variables, no discretization procedure is necessary. This method is applicable to stationary streaming data as well as large data sets.

  6. Quantile normalization - Wikipedia

    en.wikipedia.org/wiki/Quantile_normalization

    In the case of column 2, they represent ranks iii and iv. So we assign the two tied rank iii entries the average of rank iii and rank iv ((4.67 + 5.67)/2 = 5.17). And so we arrive at the following set of normalized values:

  7. Friedman test - Wikipedia

    en.wikipedia.org/wiki/Friedman_test

    The Friedman test is a non-parametric statistical test developed by Milton Friedman. [1] [2] [3] Similar to the parametric repeated measures ANOVA, it is used to detect differences in treatments across multiple test attempts.

  8. Learning to rank - Wikipedia

    en.wikipedia.org/wiki/Learning_to_rank

    Learning to rank [1] or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the construction of ranking models for information retrieval systems. [2] Training data may, for example, consist of lists of items with some partial order specified between items in ...

  9. ANOVA on ranks - Wikipedia

    en.wikipedia.org/wiki/ANOVA_on_ranks

    Conover and Iman provided a review of the four main types of rank transformations (RT). [1] One method replaces each original data value by its rank (from 1 for the smallest to N for the largest). This rank-based procedure has been recommended as being robust to non-normal errors, resistant to outliers, and highly efficient for many distributions.