enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DNA methylation - Wikipedia

    en.wikipedia.org/wiki/DNA_methylation

    While DNA methylation does not have the flexibility required for the fine-tuning of gene regulation, its stability is perfect to ensure the permanent silencing of transposable elements. [33] Transposon control is one of the most ancient functions of DNA methylation that is shared by animals, plants and multiple protists. [34]

  3. Differentially methylated region - Wikipedia

    en.wikipedia.org/wiki/Differentially_methylated...

    Differentially methylated regions (DMRs) are genomic regions with different DNA methylation status across different biological samples and regarded as possible functional regions involved in gene transcriptional regulation. The biological samples can be different cells/tissues within the same individual, the same cell/tissue at different times ...

  4. Methyltransferase - Wikipedia

    en.wikipedia.org/wiki/Methyltransferase

    2'-O-methylation, m6A methylation, m1G methylation as well as m5C are most commonly methylation marks observed in different types of RNA. 6A is an enzyme that catalyzes chemical reaction as following: [9] S-adenosyl-L-methionine + DNA adenine S-adenosyl-L-homocysteine + DNA 6-methylaminopurine

  5. TET enzymes - Wikipedia

    en.wikipedia.org/wiki/TET_enzymes

    They are instrumental in DNA demethylation. 5-Methylcytosine (see first Figure) is a methylated form of the DNA base cytosine (C) that often regulates gene transcription and has several other functions in the genome. [1] DNA methylation is the addition of a methyl group to the DNA that happens at cytosine. The image shows a cytosine single ring ...

  6. DNA (cytosine-5)-methyltransferase 3A - Wikipedia

    en.wikipedia.org/wiki/DNA_(cytosine-5)-methyl...

    This enzyme is responsible for de novo DNA methylation. Such function is to be distinguished from maintenance DNA methylation which ensures the fidelity of replication of inherited epigenetic patterns. DNMT3A forms part of the family of DNA methyltransferase enzymes, which consists of the protagonists DNMT1, DNMT3A and DNMT3B. [5] [6]

  7. Contribution of epigenetic modifications to evolution - Wikipedia

    en.wikipedia.org/wiki/Contribution_of_epigenetic...

    DNA methylation can be stable during cell division, allowing for methylation states to be passed to other orthologous genes in a genome. DNA methylation can be reversed via enzymes known as DNA de-methylases, while histone modifications can be reversed by removing histone acetyl groups with deacetylases. The process of DNA methylation reversal ...

  8. Methyl-CpG-binding domain protein 2 - Wikipedia

    en.wikipedia.org/wiki/Methyl-CpG-binding_domain...

    DNA methylation is the major modification of eukaryotic genomes and plays an essential role in mammalian development. Human proteins MECP2, MBD1, MBD2, MBD3, and MBD4 comprise a family of nuclear proteins related by the presence in each of a methyl-CpG-binding domain (MBD). Each of these proteins, with the exception of MBD3, is capable of ...

  9. DNMT1 - Wikipedia

    en.wikipedia.org/wiki/DNMT1

    DNA (cytosine-5)-methyltransferase 1 (Dnmt1) is an enzyme that catalyzes the transfer of methyl groups to specific CpG sites in DNA, a process called DNA methylation. In humans, it is encoded by the DNMT1 gene. [5] Dnmt1 forms part of the family of DNA methyltransferase enzymes, which consists primarily of DNMT1, DNMT3A, and DNMT3B.