Search results
Results from the WOW.Com Content Network
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
To investigate the left distributivity of set subtraction over unions or intersections, consider how the sets involved in (both of) De Morgan's laws are all related: () = = () always holds (the equalities on the left and right are De Morgan's laws) but equality is not guaranteed in general (that is, the containment might be strict).
As sets can be interpreted as a kind of map (by the indicator function), sets are commonly implemented in the same way as (partial) maps (associative arrays) – in this case in which the value of each key-value pair has the unit type or a sentinel value (like 1) – namely, a self-balancing binary search tree for sorted sets [definition needed ...
8 Ways of defining sets/Relation to descriptive set ... Toggle the table of contents. List of types of sets. Add languages. Add links. ... regular closed set ...
In set theory, a universal set is a set which contains all objects, including itself. [1] In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set.
More generally, a collection of any sets whatsoever is called a family of sets, set family, or a set system. Additionally, a family of sets may be defined as a function from a set I {\displaystyle I} , known as the index set, to F {\displaystyle F} , in which case the sets of the family are indexed by members of I {\displaystyle I} . [ 1 ]
Every set is a projective object in Set (assuming the axiom of choice). The finitely presentable objects in Set are the finite sets. Since every set is a direct limit of its finite subsets, the category Set is a locally finitely presentable category. If C is an arbitrary category, the contravariant functors from C to Set are often an important ...
The axiom of choice produces a choice set whose size is not bigger than the size of the given set of nonempty sets. The limitation of size doctrine does not justify the axiom of infinity: [({})], which uses the empty set and sets obtained from the empty set by iterating the ordinal successor operation. Since these sets are finite, any set ...