Search results
Results from the WOW.Com Content Network
Since cosh x + sinh x = e x, an analog to de Moivre's formula also applies to the hyperbolic trigonometry. For all integers n, ( + ) = + . If n is a rational number (but not necessarily an integer), then cosh nx + sinh nx will be one of the values of (cosh x + sinh x) n. [4]
In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power n. Roots of unity are used in many branches of mathematics, and are especially important in number theory , the theory of group characters , and the discrete Fourier transform .
One of them is a false root. If so, the example when x=0 and x=2*pi will not be ambiguous as long as the false root is discarded. Therefore, the section that says De Moivre's formula fails for non-integer power has used the wrong form of De Moivre's formula and has drawn an incorrect conclusion from the wrong formula.
Published in 1738 by Woodfall and running for 258 pages, the second edition of de Moivre's book introduced the concept of normal distributions as approximations to binomial distributions. In effect de Moivre proved a special case of the central limit theorem. Sometimes his result is called the theorem of de Moivre–Laplace.
Blondel's theorem (electric power) Blum's speedup theorem (computational complexity theory) Bôcher's theorem (complex analysis) Bochner's tube theorem (complex analysis) Bogoliubov–Parasyuk theorem (quantum field theory) Bohr–Mollerup theorem (gamma function) Bohr–van Leeuwen theorem ; Bolyai–Gerwien theorem (discrete geometry)
de Moivre's theorem may be: de Moivre's formula, a trigonometric identity; Theorem of de Moivre–Laplace, a central limit theorem This page was last edited on 28 ...
Abraham de Moivre was born in Vitry-le-François in Champagne on 26 May 1667. His father, Daniel de Moivre, was a surgeon who believed in the value of education. Though Abraham de Moivre's parents were Protestant, he first attended Christian Brothers' Catholic school in Vitry, which was unusually tolerant given religious tensions in France at the time.
This concept is attributed to Abraham de Moivre (1718), [1] although it first appears in a paper of Daniel da Silva (1854) [2] and later in a paper by J. J. Sylvester (1883). [3] Sometimes the principle is referred to as the formula of Da Silva or Sylvester, due to these publications.