Search results
Results from the WOW.Com Content Network
Gas exchange is the physical process by which gases move passively by diffusion across a surface. For example, this surface might be the air/water interface of a water body, the surface of a gas bubble in a liquid, a gas-permeable membrane, or a biological membrane that forms the boundary between an organism and its extracellular environment.
Depending on the type and amount of irritant gas inhaled, victims can experience symptoms ranging from minor respiratory discomfort to acute airway and lung injury and even death. A common response cascade to a variety of irritant gases includes inflammation, edema and epithelial sloughing, which if left untreated can result in scar formation ...
Gas exchange takes place in the gills which consist of thin or very flat filaments and lammellae which expose a very large surface area of highly vascularized tissue to the water. Other animals, such as insects, have respiratory systems with very simple anatomical features, and in amphibians, even the skin plays a vital role in gas exchange.
The underlying mechanism involves diffuse injury to cells which form the barrier of the microscopic air sacs of the lungs, surfactant dysfunction, activation of the immune system, and dysfunction of the body's regulation of blood clotting. [5] In effect, ARDS impairs the lungs' ability to exchange oxygen and carbon dioxide. [1]
For most infections, the immune response of the body is enough to control and apprehend the infection within a couple days, but if the tissue and the cells can't fight off the infection, the creation of pus will begin to form in the lungs which then hardens into lung abscess or suppurative pneumonitis. [6]
Exchange of gases in the lung occurs by ventilation and perfusion. [1] Ventilation refers to the in-and-out movement of air of the lungs and perfusion is the circulation of blood in the pulmonary capillaries. [1] In mammals, physiological respiration involves respiratory cycles of inhaled and exhaled breaths.
Ventilation is the movement of gas during breathing, and perfusion is the process of pulmonary blood circulation, which delivers oxygen to body tissues. [2] Anatomically, the lung structure, alveolar organization , and alveolar capillaries contribute to the physiological mechanism of ventilation and perfusion. [ 1 ]
The main reason for exhalation is to rid the body of carbon dioxide, which is the waste product of gas exchange in humans. Air is brought into the lungs through inhalation. Diffusion in the alveoli allows for the exchange of O 2 into the pulmonary capillaries and the removal of CO 2 and other gases from the pulmonary capillaries to be exhaled ...