Search results
Results from the WOW.Com Content Network
The log-normal distribution has also been associated with other names, such as McAlister, Gibrat and Cobb–Douglas. [4] A log-normal process is the statistical realization of the multiplicative product of many independent random variables, each of which is positive.
Logistic regression is used in various fields, including machine learning, most medical fields, and social sciences. For example, the Trauma and Injury Severity Score (), which is widely used to predict mortality in injured patients, was originally developed by Boyd et al. using logistic regression. [6]
Machine learning (ML) involves learning statistical relationships within data. To train ML models effectively, it is crucial to use data that is broadly generalizable. If the training data is insufficiently representative of the task, the model's performance on new, unseen data may be poor.
Similarly, likelihoods are often transformed to the log scale, and the corresponding log-likelihood can be interpreted as the degree to which an event supports a statistical model. The log probability is widely used in implementations of computations with probability, and is studied as a concept in its own right in some applications of ...
In an analysis where X and Y are treated symmetrically, the log-ratio log(X / Y) is zero in the case of equality, and it has the property that if X is K times greater than Y, the log-ratio is the equidistant from zero as in the situation where Y is K times greater than X (the log-ratios are log(K) and −log(K) in these two situations).
It is also possible in some cases to fix the problem by applying a transformation to the response variable (e.g., fitting the logarithm of the response variable using a linear regression model, which implies that the response variable itself has a log-normal distribution rather than a normal distribution).
For example, the standard softmax of (,,) is approximately (,,), which amounts to assigning almost all of the total unit weight in the result to the position of the vector's maximal element (of 8). In general, instead of e a different base b > 0 can be used.
In probability theory, statistics, and machine learning, the continuous Bernoulli distribution [1] [2] [3] is a family of continuous probability distributions parameterized by a single shape parameter (,), defined on the unit interval [,], by: