Ads
related to: universal set definition and example in geometry class 8
Search results
Results from the WOW.Com Content Network
In set theory, a universal set is a set which contains all objects, including itself. [1] In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
For instance, when investigating properties of the real numbers R (and subsets of R), R may be taken as the universal set. A true universal set is not included in standard set theory (see Paradoxes below), but is included in some non-standard set theories. Given a universal set U and a subset A of U, the complement of A (in U) is defined as
A derived binary relation between two sets is the subset relation, also called set inclusion. If all the members of set A are also members of set B, then A is a subset of B, denoted A ⊆ B. For example, {1, 2} is a subset of {1, 2, 3}, and so is {2} but {1, 4} is not. As implied by this definition, a set is a subset of itself.
If the set B is the union of the suits of clubs and diamonds, then the complement of B is the union of the suits of hearts and spades. When the universe is the universe of sets described in formalized set theory, the absolute complement of a set is generally not itself a set, but rather a proper class. For more info, see universal set.
When is empty, the condition given above is an example of a vacuous truth. So the intersection of the empty family should be the universal set (the identity element for the operation of intersection), [4] but in standard set theory, the universal set does not exist.
Universal constructions are functorial in nature: if one can carry out the construction for every object in a category C then one obtains a functor on C. Furthermore, this functor is a right or left adjoint to the functor U used in the definition of the universal property. [2] Universal properties occur everywhere in mathematics.
Dually, a universal morphism from U to X is a terminal object in (U ↓ X). The limit of a diagram F is a terminal object in Cone(F), the category of cones to F. Dually, a colimit of F is an initial object in the category of cones from F. A representation of a functor F to Set is an initial object in the category of elements of F.
Ads
related to: universal set definition and example in geometry class 8