enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of axioms - Wikipedia

    en.wikipedia.org/wiki/List_of_axioms

    Together with the axiom of choice (see below), these are the de facto standard axioms for contemporary mathematics or set theory. They can be easily adapted to analogous theories, such as mereology. Axiom of extensionality; Axiom of empty set; Axiom of pairing; Axiom of union; Axiom of infinity; Axiom schema of replacement; Axiom of power set ...

  3. Zermelo–Fraenkel set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo–Fraenkel_set_theory

    The following particular axiom set is from Kunen (1980). The axioms in order below are expressed in a mixture of first order logic and high-level abbreviations. Axioms 1–8 form ZF, while the axiom 9 turns ZF into ZFC. Following Kunen (1980), we use the equivalent well-ordering theorem in place of the axiom of choice for axiom 9.

  4. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    Set theory is also a promising foundational system for much of mathematics. Since the publication of the first volume of Principia Mathematica, it has been claimed that most (or even all) mathematical theorems can be derived using an aptly designed set of axioms for set theory, augmented with many definitions, using first or second-order logic.

  5. Category:Axioms of set theory - Wikipedia

    en.wikipedia.org/wiki/Category:Axioms_of_set_theory

    This category is for axioms in the language of set theory; roughly speaking, ones that "talk about sets".Inclusion in this category does not necessarily imply that the axiom in question is an accepted axiom, or that it is believed to be true in the von Neumann universe of sets.

  6. Axiom of choice - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_choice

    A proof requiring the axiom of choice may establish the existence of an object without explicitly defining the object in the language of set theory. For example, while the axiom of choice implies that there is a well-ordering of the real numbers, there are models of set theory with the axiom of choice in which no individual well-ordering of the ...

  7. Axiom schema of specification - Wikipedia

    en.wikipedia.org/wiki/Axiom_schema_of_specification

    In many popular versions of axiomatic set theory, the axiom schema of specification, [1] also known as the axiom schema of separation (Aussonderungsaxiom), [2] subset axiom [3], axiom of class construction, [4] or axiom schema of restricted comprehension is an axiom schema. Essentially, it says that any definable subclass of a set is a set.

  8. Axiom of regularity - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_regularity

    Given the other axioms of Zermelo–Fraenkel set theory, the axiom of regularity is equivalent to the axiom of induction. The axiom of induction tends to be used in place of the axiom of regularity in intuitionistic theories (ones that do not accept the law of the excluded middle), where the two axioms are not equivalent.

  9. Gödel's incompleteness theorems - Wikipedia

    en.wikipedia.org/wiki/Gödel's_incompleteness...

    A set of axioms is (syntactically, or negation-) complete if, for any statement in the axioms' language, that statement or its negation is provable from the axioms. [2] This is the notion relevant for Gödel's first Incompleteness theorem.