Search results
Results from the WOW.Com Content Network
The number of k-combinations for all k is the number of subsets of a set of n elements. There are several ways to see that this number is 2 n. In terms of combinations, () =, which is the sum of the nth row (counting from 0) of the binomial coefficients in Pascal's triangle.
The number associated in the combinatorial number system of degree k to a k-combination C is the number of k-combinations strictly less than C in the given ordering. This number can be computed from C = {c k, ..., c 2, c 1} with c k > ... > c 2 > c 1 as follows.
Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...
The Indian mathematician Mahāvīra (c. 850) provided formulae for the number of permutations and combinations, [13] [14] and these formulas may have been familiar to Indian mathematicians as early as the 6th century CE. [15]
Note that the ancient Sanskrit sages discovered many years before Fibonacci that the number of compositions of any natural number n as the sum of 1's and 2's is the nth Fibonacci number! Note that these are not general compositions as defined above because the numbers are restricted to 1's and 2's only. 1=1 (1) 2=1+1=2 (2) 3=1+1+1=1+2=2+1 (3)
For any pair of positive integers n and k, the number of k-tuples of positive integers whose sum is n is equal to the number of (k − 1)-element subsets of a set with n − 1 elements. For example, if n = 10 and k = 4, the theorem gives the number of solutions to x 1 + x 2 + x 3 + x 4 = 10 (with x 1, x 2, x 3, x 4 > 0) as the binomial coefficient
An archetypal double counting proof is for the well known formula for the number () of k-combinations (i.e., subsets of size k) of an n-element set: = (+) ().Here a direct bijective proof is not possible: because the right-hand side of the identity is a fraction, there is no set obviously counted by it (it even takes some thought to see that the denominator always evenly divides the numerator).
The formula counting all functions N → X is not useful here, because the number of them grouped together by permutations of N varies from one function to another. Rather, as explained under combinations , the number of n -multicombinations from a set with x elements can be seen to be the same as the number of n -combinations from a set with x ...