enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standard normal table - Wikipedia

    en.wikipedia.org/wiki/Standard_normal_table

    Example: To find 0.69, one would look down the rows to find 0.6 and then across the columns to 0.09 which would yield a probability of 0.25490 for a cumulative from mean table or 0.75490 from a cumulative table. To find a negative value such as -0.83, one could use a cumulative table for negative z-values [3] which yield a probability of 0.20327.

  3. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    A discrete probability distribution is applicable to the scenarios where the set of possible outcomes is discrete (e.g. a coin toss, a roll of a die) and the probabilities are encoded by a discrete list of the probabilities of the outcomes; in this case the discrete probability distribution is known as probability mass function.

  4. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    This follows from the definition of independence in probability: the probabilities of two independent events happening, given a model, is the product of the probabilities. This is particularly important when the events are from independent and identically distributed random variables , such as independent observations or sampling with replacement .

  5. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    The probabilities of rolling several numbers using two dice. Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur.

  6. Conditional probability table - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability_table

    In statistics, the conditional probability table (CPT) is defined for a set of discrete and mutually dependent random variables to display conditional probabilities of a single variable with respect to the others (i.e., the probability of each possible value of one variable if we know the values taken on by the other variables).

  7. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The following table gives the quantile such that will lie in the range with a specified probability . These values are useful to determine tolerance interval for sample averages and other statistical estimators with normal (or asymptotically normal) distributions. [ 15 ]

  8. Bernoulli distribution - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_distribution

    In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli, [1] is the discrete probability distribution of a random variable which takes the value 1 with probability and the value 0 with probability =.

  9. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.