Search results
Results from the WOW.Com Content Network
Still image of a movie of increasing magnification on 0.001643721971153 − 0.822467633298876i Still image of an animation of increasing magnification. There are many programs and algorithms used to plot the Mandelbrot set and other fractals, some of which are described in fractal-generating software.
The Mandelbrot set within a continuously colored environment. The Mandelbrot set (/ ˈ m æ n d əl b r oʊ t,-b r ɒ t /) [1] [2] is a two-dimensional set with a relatively simple definition that exhibits great complexity, especially as it is magnified.
Original - Mandelbrot zoom in. Reason Simply an epic animation and a fantastic representation of the multiple layers of complexity and chaos that make up the Mandelbrot set. The user Slaunger suggested that a scaled up version of an earlier animation, made by user Zom-B would probably be worthy of being
The Mandelbrot set, named after Benoît Mandelbrot, is a set of points in the complex plane, the boundary of which forms a fractal. When computed and graphed on the complex plane the Mandelbrot Set is seen to have an elaborate boundary which does not simplify at any given magnification. Above is a magnification of the boundary.
The Mandelbrot set consists of the points c in the complex plane that generate a bounded sequence of values when the recursive relation z n+1 = z n 2 + c is repeatedly applied starting with z 0 = 0. The boundary of the set is a highly complicated fractal, revealing ever finer detail at increasing
The main image in the set is Mandel zoom 00 mandelbrot set.jpg. If you have a different image of similar quality, be sure to upload it using the proper free license tag , add it to a relevant article, and nominate it .
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
In mathematics, a Multibrot set is the set of values in the complex plane whose absolute value remains below some finite value throughout iterations by a member of the general monic univariate polynomial family of recursions. [1] [2] [3] The name is a portmanteau of multiple and Mandelbrot set.