Search results
Results from the WOW.Com Content Network
In the first half of the 19th century many very important additions were made to the world's knowledge concerning electricity and magnetism. For example, in 1820 Hans Christian Ørsted of Copenhagen discovered the deflecting effect of an electric current traversing a wire upon a suspended magnetic needle. [11]
Michael Faraday holding a piece of glass of the type he used to demonstrate the effect of magnetism on polarization of light, c. 1857.. By 1845, it was known through the work of Augustin-Jean Fresnel, Étienne-Louis Malus, and others that different materials are able to modify the direction of polarization of light when appropriately oriented, [4] making polarized light a very powerful tool to ...
Hans Christian Ørsted (/ ˈ ɜːr s t ɛ d /; [5] Danish: [ˈhænˀs ˈkʰʁestjæn ˈɶɐ̯steð] ⓘ; often rendered Oersted in English; [note 1] 14 August 1777 – 9 March 1851) was a Danish physicist and chemist who discovered that electric currents create magnetic fields. This phenomenon is known as Oersted's law. He also discovered ...
In 1845, Faraday discovered that many materials exhibit a weak repulsion from a magnetic field: an effect he termed diamagnetism. [ 65 ] Faraday also discovered that the plane of polarization of linearly polarised light can be rotated by the application of an external magnetic field aligned with the direction in which the light is moving.
1833 – Heinrich Lenz states Lenz's law: if an increasing (or decreasing) magnetic flux induces an electromotive force (EMF), the resulting current will oppose a further increase (or decrease) in magnetic flux, i.e., that an induced current in a closed conducting loop will appear in such a direction that it opposes the change that produced it.
A current is induced in a loop of wire when it is moved toward or away from a magnetic field, or a magnet is moved towards or away from it; the direction of current depends on that of the movement. [9] In April 1820, Hans Christian Ørsted observed that an electrical current in a wire caused a nearby compass needle to move. At the time of ...
The magnetic field (marked B, indicated by red field lines) around wire carrying an electric current (marked I) Compass and wire apparatus showing Ørsted's experiment (video [1]) In electromagnetism , Ørsted's law , also spelled Oersted's law , is the physical law stating that an electric current induces a magnetic field .
A current-carrying coil of wire induces a magnetic field according to Ampère's circuital law. The greater the current I , the greater the energy stored in the magnetic field and the lower the inductance which is defined L = Φ B / I {\textstyle L=\Phi _{B}/I} where Φ B {\textstyle \Phi _{B}} is the magnetic flux produced by the coil of wire.