Search results
Results from the WOW.Com Content Network
The insulin transduction pathway is a biochemical pathway by which insulin increases the uptake of glucose into fat and muscle cells and reduces the synthesis of glucose in the liver and hence is involved in maintaining glucose homeostasis. This pathway is also influenced by fed versus fasting states, stress levels, and a variety of other ...
The insulin receptor (IR) is a transmembrane receptor that is activated by insulin, IGF-I, IGF-II and belongs to the large class of receptor tyrosine kinase. [5] Metabolically, the insulin receptor plays a key role in the regulation of glucose homeostasis; a functional process that under degenerate conditions may result in a range of clinical manifestations including diabetes and cancer.
Insulin is a peptide hormone containing two chains cross-linked by disulfide bridges. Insulin (/ ˈ ɪ n. sj ʊ. l ɪ n /, [5] [6] from Latin insula, 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the insulin (INS) gene. It is the main anabolic hormone of the body. [7]
Insulin receptor substrate 1 (IRS-1) is a signaling adapter protein that in humans is encoded by the IRS1 gene. [5] It is a 180 kDa protein with amino acid sequence of 1242 residues. [ 6 ] It contains a single pleckstrin homology (PH) domain at the N-terminus and a PTB domain ca. 40 residues downstream of this, followed by a poorly conserved C ...
The insulin signal transduction pathway begins when insulin binds to the insulin receptor proteins. Once the transduction pathway is completed, the GLUT-4 storage vesicles becomes one with the cellular membrane. As a result, the GLUT-4 protein channels become embedded into the membrane, allowing glucose to be transported into the cell.
The insulin protein has been highly conserved across evolutionary time, and is present in both mammals and invertebrates. The insulin/insulin-like growth factor signalling pathway (IIS) has been extensively studied in species including nematode worms (e.g.C. elegans), flies (Drosophila melanogaster) and mice (Mus musculus). Its mechanisms of ...
Diabetes mellitus type 1 is caused by insufficient or non-existent production of insulin, while type 2 is primarily due to a decreased response to insulin in the tissues of the body (insulin resistance). Both types of diabetes, if untreated, result in too much glucose remaining in the blood (hyperglycemia) and many of the same complications.
DAF-16 is notable for being the primary transcription factor required for the profound lifespan extension observed upon mutation of the insulin-like receptor DAF-2. [5] The gene has played a large role in research into longevity and the insulin signalling pathway as it is located in C. elegans, a successful ageing model organism. [6]